1. School of Transportation, Southeast University, Nanjing 211189, China 2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies and Jiangsu Key Laboratory of Intelligent Transportation, Southeast University, Nanjing 211189, China 3. National Demonstration Center for Experimental Road and Traffic Engineering Education, Southeast University, Nanjing 211189, China 4. Les International (Minsk) Information Technology Limited Company, Minsk 220030, Belarus 5. Nanjing Les International Information Technology Limited Company, Nanjing 210000, China
An algorithm was proposed to optimize the subsystems partition method and signal coordination scheme for the long arterial considering breakpoint cost based on the classical signal coordination scheme model in order to prevent the occurrence of few or infeasible bandwidth in a long arterial signal coordination progression. Whether each intersection is a green wave segmentation point was described by a series of binary variables. The bandwidth and loop integer constraints in the algorithm were revised according to the different coordination connection between two intersections which belong to a same subsystem or not. The actual bandwidth sum with the loss at the beginning of each subsystem was taken as the optimization objective by considering the bandwidth loss at the breakpoint between two subsystems. The subsystems partition and signal coordination scheme for long arterial considering breakpoint cost was proposed. Results show that proposed model can effectively increase the subsystem bandwidth and improve the main arterial efficiency by comparing the solutions of MAXBAND-81 with proposed model. The optimal subsystem partition method and the maximum bandwidth sum can be obtained by proposed model in the global scope when the limit number of subsystems cannot be determined before operation.
Jia-jie YU,Yan-jie JI,Qing BU,Yue-biao ZHENG. Partitioned green-wave control scheme for long arterial considering breakpoint cost. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 640-648.
Fig.1Time-space diagram of green-wave control comparison
Fig.2Partition method of long arterial
Fig.3Time-space diagram of green-wave control
交叉口编号
东进口流量/(pcu·h?1)
西进口流量/( pcu·h?1)
南进口流量/( pcu·h?1)
北进口流量/( pcu·h?1)
左转
直行
右转
左转
直行
右转
左转
直行
右转
左转
直行
右转
1
147
2523
297
30
534
63
60
1029
120
96
807
48
2
138
2328
273
30
519
60
72
1200
141
75
645
39
3
126
2163
255
30
489
57
57
945
111
129
1101
66
4
120
2 043
240
27
438
51
78
1332
156
120
1014
60
5
117
1 971
231
24
423
51
51
870
102
84
705
42
6
108
1 833
216
24
408
48
45
750
87
90
771
45
7
102
1710
201
24
393
45
42
690
81
93
798
48
8
93
1602
189
24
390
45
36
636
75
69
582
33
9
87
1482
174
21
381
45
33
579
69
87
729
42
10
81
1392
165
24
384
45
33
537
63
72
600
36
11
75
1296
153
24
396
48
30
492
57
51
423
24
12
69
1194
141
24
411
48
27
450
54
57
489
30
13
66
1110
129
24
417
48
36
621
72
63
528
30
14
63
1056
123
24
420
48
33
585
69
72
609
36
15
60
1017
120
24
423
51
33
558
66
78
654
39
16
57
987
117
27
453
54
27
450
54
36
312
18
17
54
915
108
30
486
57
24
414
48
45
369
21
18
51
855
102
30
516
60
36
594
69
42
354
21
19
48
822
96
33
561
66
30
519
60
30
249
15
20
45
777
90
36
612
72
24
414
48
48
399
24
Tab.1Traffic volume data of long arterial
Fig.4Distribution of long arterial intersections
Fig.5Lane division at intersection
交叉口序号
MAXBAND-81
M2(c = 5)
周期时长/s
相位差/周期
带宽/周期
周期时长/s
相位差/周期
子段编号
带宽/周期
1
150
–
0.26+0.18
80
–
1
0.51+0.29
2
150
0.05
0.26+0.18
80
0.05
1
0.51+0.29
3
150
0.01
0.26+0.18
80
0.08
1
0.51+0.29
4
150
0.99
0.26+0.18
80
0.16
1
0.51+0.29
5
150
0.90
0.26+0.18
80
0.14
1
0.51+0.29
6
150
0.08
0.26+0.18
80
0.38
2
0.59+0.28
7
150
0.49
0.26+0.18
80
0.55
2
0.59+0.28
8
150
0.37
0.26+0.18
80
0.72
3
0.58+0.19
9
150
0.67
0.26+0.18
80
0.77
3
0.58+0.19
10
150
0.55
0.26+0.18
80
0.88
3
0.58+0.19
11
150
0.99
0.26+0.18
80
0.91
3
0.58+0.19
12
150
0.84
0.26+0.18
80
0.14
4
0.51+0.30
13
150
0.95
0.26+0.18
80
0.20
4
0.51+0.30
14
150
0.19
0.26+0.18
80
0.19
4
0.51+0.30
15
150
0.13
0.26+0.18
80
0.27
4
0.51+0.30
16
150
0.99
0.26+0.18
80
0.28
4
0.51+0.30
17
150
0.05
0.26+0.18
80
0.25
4
0.51+0.30
18
150
0.55
0.26+0.18
80
0.53
5
0.49+0.08
19
150
0.49
0.26+0.18
80
0.68
5
0.49+0.08
20
150
0.52
0.26+0.18
80
0.70
5
0.49+0.08
Tab.2Results of MAXBAND-81 and M2
Fig.6Time-space diagram of MAXBAND and proposed model
交叉口序号
c = 4
c = 6
c = 10
周期时长/s
子段编号
带宽/周期
周期时长/s
子段编号
带宽/周期
周期时长/s
子段编号
带宽/周期
1
150
1
0.51+0.29
150
1
0.51+0.29
150
1
0.51+0.29
2
150
1
0.51+0.29
150
1
0.51+0.29
150
1
0.51+0.29
3
150
1
0.51+0.29
150
1
0.51+0.29
150
1
0.51+0.29
4
150
1
0.51+0.29
150
1
0.51+0.29
150
1
0.51+0.29
5
150
1
0.51+0.29
150
1
0.51+0.29
150
1
0.51+0.29
6
150
2
0.56+0
150
2
0.59+0.28
150
2
0.59+0.28
7
150
2
0.56+0
150
2
0.59+0.28
150
2
0.59+0.28
8
150
2
0.56+0
150
3
0.58+0.19
150
3
0.58+0.19
9
150
2
0.56+0
150
3
0.58+0.19
150
3
0.58+0.19
10
150
2
0.56+0
150
3
0.58+0.19
150
3
0.58+0.19
11
150
2
0.56+0
150
3
0.58+0.19
150
3
0.58+0.19
12
150
3
0.51+0.30
150
4
0.51+0.30
150
4
0.51+0.30
13
150
3
0.51+0.30
150
4
0.51+0.30
150
4
0.51+0.30
14
150
3
0.51+0.30
150
4
0.51+0.30
150
4
0.51+0.30
15
150
3
0.51+0.30
150
4
0.51+0.30
150
4
0.51+0.30
16
150
3
0.51+0.30
150
4
0.51+0.30
150
4
0.51+0.30
17
150
3
0.51+0.30
150
4
0.51+0.30
150
4
0.51+0.30
18
150
4
0.49+0.08
150
5
0.49+0.08
150
5
0.49+0.08
19
150
4
0.49+0.08
150
5
0.49+0.08
150
5
0.49+0.08
20
150
4
0.49+0.08
150
5
0.49+0.08
150
5
0.49+0.08
Tab.3Results of M2 with different c value
控制模型
vavg/(km·h?1)
ttr/s
D/(104 s)
MAXBAND
29.51
1287.02
47.13
分段绿波
31.47
1095.99
33.39
Tab.4Main arterial performance
Fig.7Travel charcteristics of main outbound links
[1]
ZHANG C, XIE Y, GARTNER N H, et al AM-band: an asymmetrical multi-band model for arterial traffic signal coordination[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 515- 531
doi: 10.1016/j.trc.2015.04.014
[2]
LE T, KOVáCS P, WALTON N, et al Decentralized signal control for urban road networks[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 431- 450
doi: 10.1016/j.trc.2014.11.009
[3]
LITTLE J D C The synchronization of traffic signals by mixed-integer linear programming[J]. Operations Research, 1966, 14 (4): 568- 594
doi: 10.1287/opre.14.4.568
[4]
LITTLE J D C, KELSON M D, GARTNER N M Maxband: a program for setting signals on arteries and triangular networks[J]. Transportation Research Record, 1981, 795: 40- 46
[5]
GARTNER N H, ASSMANN S F, LASAGA F, et al Multiband-a variable-bandwidth arterial progression scheme[J]. Transportation Research Record, 1990, 1287: 212- 222
[6]
TIAN Z, URBANIK T System partition technique to improve signal coordination and traffic progression[J]. Journal of Transportation Engineering-ASCE, 2007, 133 (2): 119- 128
doi: 10.1061/(ASCE)0733-947X(2007)133:2(119)
[7]
ZHANG L, SONG Z, TANG X, et al Signal coordination models for long arterials and grid networks[J]. Transportation Research Part C-emerging Technologies, 2016, 71: 215- 230
doi: 10.1016/j.trc.2016.07.015