Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1279-1288    DOI: 10.3785/j.issn.1008-973X.2021.07.007
    
Linear active disturbance rejection control with adjustable compensation factor applied for outer voltage control of inverter
Yang LI(),Rong QI*(),Ming-guang DAI
School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
Download: HTML     PDF(2742KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the transient performance of the microgrid inverter output voltage under reference voltage changes and load disturbances, a linear active disturbance rejection control (LADRC) strategy was proposed, in which the compensation factor was regarded as an adjustable parameter. The inverter model in the synchronous rotating frame was established, and the second-order LADRC with the output voltage as the state variable was designed under the proportional regulator in the current loop. The influence of the compensation factor on the system stability, dynamic performance, and anti-disturbance ability were analyzed by the root locus and frequency domain characteristics respectively, which provided a theoretical basis for the adjustment of compensation factor. On this basis, the design process of the control parameters in the LADRC and current regulator was given, and the compared simulation and experiment was carried out. Simulation analysis and experimental results show that by appropriately reducing the compensation factor, the voltage response speed can be accelerated, the overshoot can be reduced, and the system's anti-load disturbance ability can be improved.



Key wordsmicrogrid inverter      linear active disturbance rejection control (LADRC)      compensation factor      root locus      frequency domain characteristics      anti-load disturbance     
Received: 20 May 2020      Published: 05 July 2021
CLC:  TM 464  
Fund:  陕西省重点研发计划资助项目(2018ZDCXL-GY-05-07-01)
Corresponding Authors: Rong QI     E-mail: liyangxgd@163.com;lhqr@nwpu.edu.cn
Cite this article:

Yang LI,Rong QI,Ming-guang DAI. Linear active disturbance rejection control with adjustable compensation factor applied for outer voltage control of inverter. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1279-1288.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.007     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1279


补偿因子可调逆变器电压外环线性自抗扰控制

为了提高微电网逆变器在参考电压变化和负载扰动下输出电压的暂态性能,提出将补偿因子视为可调参数的线性自抗扰控制(LADRC)策略. 通过建立同步旋转坐标系下的微电网逆变器模型,结合电流环比例调节器,设计以输出电压为状态变量的二阶LADRC;利用根轨迹和频域特性曲线分析补偿因子对系统稳定性、动态性能和抗干扰能力的影响,为补偿因子的调节提供理论依据;在此基础上给出LADRC和电流调节器控制参数的设计过程;并进行对比仿真和实验. 仿真分析和实验结果表明:通过适当减小补偿因子可以加快电压响应速度,减小超调,提高系统抗负载扰动能力.


关键词: 微电网逆变器,  线性自抗扰控制(LADRC),  补偿因子,  根轨迹,  频域特性,  抗负载扰动 
Fig.1 Overall control structure of microgrid inverter
Fig.2 Dual closed-loop voltage controller structure
Fig.3 Structure of second order LADRC
Fig.4 Simplified structure of second order LADRC
Fig.5 Root locus of the system
ωc/(rad·s?1 ωo/ωc ωo/(rad·s?1 ρ
2094 2 4188 0.247~4.10
2094 5 10470 0.195~5.87
2094 8 16752 0.171~7.87
Tab.1 Stable range of ρ under different ωc and ωo
Fig.6 Frequency domain characteristics of transfer function under disturbance
参数 符号 数值 单位
直流电压 Vdc 300 V
滤波电感 Ls 3 mH
等效串联电阻 Rs 0.16 Ω
开关频率 fsw 10 kHz
死区时间 Td 2.6 μs
滤波电容 Cf 4.7 μF
线电压有效值 Vrms 154.3 V
额定频率 fn 50 Hz
采样频率 fs 10 kHz
电流环系数 Kpi 18.85
控制器带宽 ωc 2 094 rad/s
观测器带宽 ωo 6 283 rad/s
Tab.2 Parameters in the simulation and experiment
Fig.7 Simulation results of voltage tracking under different compensation factors
Fig.8 Simulation results of load disturbance under different compensation factors
Fig.9 Three-phase microgrid inverters experimental platform
Fig.10 Output voltage of inverter after reference changed
Fig.11 Changes of output voltage amplitude after reference changed
Fig.12 Output voltage of inverter after load switching
Fig.13 Changes of output voltage amplitude after load switching
[1]   李鹏, 窦鹏冲, 李雨薇, 等 微电网技术在主动配电网中的应用[J]. 电力自动化设备, 2015, 35 (4): 8- 16
LI Peng, DOU Peng-chong, LI Yu-wei, et al Application of microgrid technology in active distribution network[J]. Electric Power Automation Equipment, 2015, 35 (4): 8- 16
[2]   OLIVARES D E, MEHRIZI-SANI A, ETEMADI A H, et al Trends in microgrid control[J]. IEEE Transactions on Smart Grid, 2014, 5 (4): 1905- 1919
doi: 10.1109/TSG.2013.2295514
[3]   HOSSAIN M, POTA H, ISSA W Overview of AC microgrid controls with inverter-interfaced generations[J]. Energies, 2017, 10 (9): 1300
doi: 10.3390/en10091300
[4]   吕志鹏, 盛万兴, 刘海涛, 等 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37 (2): 349- 359
LU Zhi-peng, SHEN Wan-xing, LIU Hai-tao, et al Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37 (2): 349- 359
[5]   程启明, 余德清, 程尹曼, 等 基于自适应旋转惯量的虚拟同步发电机控制策略[J]. 电力自动化设备, 2018, 38 (12): 79- 85
CHENG Qi-ming, YU De-qing, CHENG Yin-man, et al Control strategy of virtual synchronous generator based on adaptive rotational inertia[J]. Electric Power Automation Equipment, 2018, 38 (12): 79- 85
[6]   卜立之, 李永丽, 孙广宇, 等 基于改进型重复控制算法的多功能并网逆变器设计[J]. 电力系统自动化, 2017, 41 (12): 48- 55
BU Li-zhi, LI Yong-li, SUN Guang-yu, et al Design of multi-functional grid-connected inverter based on modified repetitive control algorithm[J]. Automation of Electric Power Systems, 2017, 41 (12): 48- 55
doi: 10.7500/AEPS20161223006
[7]   揭飞, 陈国定, 钟引帆, 等 带LCL滤波的单相逆变器滑模控制[J]. 太阳能学报, 2017, 38 (4): 1032- 1038
JIE Fei, CHEN Guo-ding, ZHONG Yin-fan, et al Sliding mode control method of single-phase inverter with LCL filter[J]. Acta Energiae Solaris Sinica, 2017, 38 (4): 1032- 1038
[8]   韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
[9]   GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]// American Control Conference. Denver: IEEE, 2003: 4989-4996.
[10]   YU Y, HU X Active disturbance rejection control strategy for grid-connected photovoltaic inverter based on virtual synchronous generator[J]. IEEE Access, 2019, 7: 17328- 17336
doi: 10.1109/ACCESS.2019.2894786
[11]   ZHANG Y, ZHU J, DONG X, et al A control strategy for smooth power tracking of a grid-connected virtual synchronous generator based on linear active disturbance rejection control[J]. Energies, 2019, 12 (15): 3024
doi: 10.3390/en12153024
[12]   BENRABAH A, XU D, GAO Z Active disturbance rejection control of LCL filtered grid-connected inverter using Padé approximation[J]. IEEE Transactions on Industry Applications, 2018, 54 (6): 6179- 6189
doi: 10.1109/TIA.2018.2855128
[13]   WANG B, SHEN Z, LIU H, et al Linear ADRC direct current control of grid-connected inverter with LCL filter for both active damping and grid voltage induced current distortion suppression[J]. IET Power Electronics, 2018, 11 (11): 1748- 1755
doi: 10.1049/iet-pel.2017.0787
[14]   杨林, 曾江, 黄仲龙 线性自抗扰技术在LCL逆变器并网电流控制及有源阻尼中的应用[J]. 电网技术, 2019, 43 (4): 1378- 1386
YANG Lin, ZENG Jiang, HUANG Zhong-long Application of linear active disturbance rejection technique in grid-connected current control and active damping of LCL type inverter[J]. Power System Technology, 2019, 43 (4): 1378- 1386
[15]   麦倩屏, 陈鸣 基于自抗扰控制技术的光储微电网无功支撑策略[J]. 电网技术, 2019, 43 (6): 2132- 2138
MAI Qian-ping, CHEN Ming Reactive power support strategy of photovoltaic/battery microgrid based on ADRC[J]. Power System Technology, 2019, 43 (6): 2132- 2138
[16]   曹永锋, 武玉衡, 叶永强, 等 基于微分前馈自抗扰的逆变器控制策略[J]. 电力系统自动化, 2019, 43 (5): 136- 142
CAO Yong-feng, WU Yu-heng, YE Yong-qiang, et al Active disturbance rejection control strategy with differential feedforward for inverters[J]. Automation of Electric Power Systems, 2019, 43 (5): 136- 142
[17]   杨林, 曾江, 马文杰, 等 基于改进二阶线性自抗扰技术的微网逆变器电压控制[J]. 电力系统自动化, 2019, 43 (4): 146- 153
YANG Lin, ZENG Jiang, MA Wen-jie, et al Voltage control of microgrid inverter based on improved second-order linear active disturbance rejection control[J]. Automation of Electric Power Systems, 2019, 43 (4): 146- 153
doi: 10.7500/AEPS20180419002
[18]   袁晓冬, 楼冠男, 陈亮, 等 基于线性自抗扰的微电网平滑切换控制策略[J]. 电网技术, 2017, 41 (12): 3824- 3831
YUAN Xiao-dong, LOU Guan-nan, CHEN Liang, et al Control strategy for microgrid seamless switching via linear active disturbance rejection[J]. Power System Technology, 2017, 41 (12): 3824- 3831
[19]   袁东, 马晓军, 曾庆含, 等 二阶系统线性自抗扰控制器频带特性与参数配置研究[J]. 控制理论与应用, 2013, 30 (12): 1630- 1640
YUAN Dong, MA Xiao-jun, ZENG Qing-han, et al Research on frequency-band characteristics and parameters configuration of linear active disturbance rejection control for second-order systems[J]. Control Theory and Applications, 2013, 30 (12): 1630- 1640
doi: 10.7641/CTA.2013.30424
[20]   陈增强, 程赟, 孙明玮, 等 线性自抗扰控制理论及工程应用的若干进展[J]. 信息与控制, 2017, 46 (3): 257- 266
CHEN Zeng-qiang, CHENG Yun, SUN Ming-wei, et al Surveys on theory and engineering applications for linear active disturbance rejection control[J]. Information and Control, 2017, 46 (3): 257- 266
[21]   李志华, 曾江, 黄骏翅, 等 基于线性自抗扰控制的微网逆变器时−频电压控制策略[J]. 电力系统自动化, 2020, 44 (10): 145- 154
LI Zhi-hua, Zeng Jiang, Huang Jun-chi, et al Time-frequency voltage control strategy of microgrid inverter based on linear active disturbance rejection control[J]. Automation of Electric Power Systems, 2020, 44 (10): 145- 154
doi: 10.7500/AEPS20190824003
[22]   朱斌. 自抗扰控制入门[M]. 北京: 北京航空航天大学出版社, 2017.
[23]   赵兴景, 朱杰, 罗翔 自抗扰技术在下肢康复训练器中的应用[J]. 东南大学学报: 自然科学版, 2019, 49 (6): 1026- 1032
ZHAO Xing-jing, ZHU Jie, LUO Xiang Application of ADRC in lower limb rehabilitation training apparatus[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (6): 1026- 1032
[1] Tian-xiang ZHOU,Xiao-yan ZHENG,Shi-ze YE,Heng-lin CHEN. Electromagnetic interference filter design based on terminal model of inverter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2215-2224.
[2] HU Ke yong, XU Fang, AI Qing lin, XU Hong wei, OU Yang jing. Redundant group control strategy for microgrid with multi-inverters[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1608-1617.
[3] ZHANG Ben ben,XU Fang,WU Le bin,AI Qing ling. Adaptive resonance damping of LCL filtered grid connected inverter[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 180-185.
[4] ZHENG Wei-feng, MA Hao, HE Xiang-ning. Inverter repetitive control method based on parameter model identification[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 896-903.
[5] ZHU Ming-lei, ZHAO Rong-xiang. Parallel convertor system with high speed distributed master-slave control method[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 2031-2037.