Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (6): 1027-1035    DOI: 10.3785/j.issn.1008-973X.2021.06.002
    
Experimental research on deformation of pile-net composite foundation with long-short piles under cyclic load
Yi-guo YANG1,2(),Kai-fu LIU3,*(),Xin-yu XIE1,4
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
3. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
4. Institute of Wenzhou, Zhejiang University, Wenzhou 325035, China
Download: HTML     PDF(1415KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The model test was conducted on geosynthetic-reinforced pile-supported composite foundation with long-short piles. The characteristics of settlement, pile strain and geogrid strain of the composite foundation were analyzed under cyclic load with different amplitudes with or without geogrid. Results show that the addition of geogrid can improve the overall performance of composite foundation under cyclic load. The foundation settlement, pile strain and geogrid strain mainly occur in the early stage of cyclic load. Increasing the amplitude of cyclic load not only increases the final settlement, but also increases the increasing rate of the settlement. The relationship between composite foundation settlement and number of load cycles can be expressed by exponential function. The membrane effect generated by the geogrid causes the stress of the soil among piles to transmit to the pile top. The strain of long-short piles in composite foundation with geogrid is larger than that without geogrid. Geogrid near the pile top takes more tension and has larger strain than that near the soil among piles. The strain increment of long pile is larger in the upper part of the pile under cyclic load, which is smaller in the lower part.



Key wordslong-short piles      geosynthetic-reinforced pile-supported composite foundation      cyclic load      foundation settlement      pile strain      geogrid strain     
Received: 10 July 2020      Published: 30 July 2021
CLC:  U 416  
Fund:  国家自然科学基金资助项目(51878619);浙江省自然科学基金资助项目(LY13E090010)
Corresponding Authors: Kai-fu LIU     E-mail: 21812130@zju.edu.cn;liukaifu@zstu.edu.cn
Cite this article:

Yi-guo YANG,Kai-fu LIU,Xin-yu XIE. Experimental research on deformation of pile-net composite foundation with long-short piles under cyclic load. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1027-1035.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.06.002     OR     https://www.zjujournals.com/eng/Y2021/V55/I6/1027


循环荷载下长短桩桩网复合地基变形试验研究

通过长短桩桩网复合地基的模型试验,分析有、无土工格栅及不同幅值循环荷载下复合地基沉降、长短桩桩身应变及土工格栅应变的特性. 试验结果表明,土工格栅的加入会改善循环荷载下复合地基的整体性能. 复合地基沉降、桩身应变及土工格栅应变主要发生在循环荷载作用前期. 增大循环荷载幅值不仅会增大复合地基总沉降,还会加快沉降发展的速率. 复合地基的沉降与循环次数的关系可以用指数函数表示. 土工格栅的拉膜效应将部分荷载由桩间土传递到桩上,相比于没有土工格栅的复合地基,有土工格栅的复合地基中长短桩的应变更大,且此时长桩桩帽处的土工格栅会承受更大的拉力,应变相较于桩间土处更大;循环荷载下的长桩上部应变增量较大,下部应变增量较小.


关键词: 长短桩,  桩网复合地基,  循环荷载,  地基沉降,  桩身应变,  土工格栅应变 
Fig.1 Geotechnical disaster simulation system
Fig.2 Layout of strain gauges on piles
ρ /(g·cm?3 ww /% c /kPa φ /(°) ωL /% ωP /%
粉质黏土 1.69 17.1 8.1 26.5 ? ?
淤泥质黏土 1.62 42.1 ? ? 40 27
Tab.1 Physical parameters of clay
土工格栅规格 网格尺寸 断裂强度/(kN·m?1
TGSG15-15 30 mm $ \times $30 mm ≥42.1
Tab.2 Physical parameters of geogrid
Fig.3 Layout of model test for pile-net composite foundation with long-short piles
Fig.4 Loading curve of cyclic load with different amplitudes
Fig.5 Loading curve of static load
试验编号 土工格栅 Fc1 /kN Fc2 /kN Fc3 /kN
1 8±3 9±4 10±5
2 8±3 ? ?
Tab.3 Loading scheme
Fig.6 Number of load cycles-settlement curves of GRPS composite foundation with and without geogrid under (8±3) kN cyclic load
Fig.7 Number of load cycles-settlement curves of GRPS composite foundation under cyclic load with different amplitudes
Fig.8 Cyclic load amplitude-settlement curves of composite foundation
循环荷载幅值/kN α β C R2
8±3 1.038 ?0.0366 ?1.158 0.9882
9±4 1.220 ?0.0379 ?1.399 0.9876
10±5 1.535 ?0.0334 ?1.788 0.9847
Tab.4 Fitting values of α, β, constant of C and coefficient of determination of R2
Fig.9 Pile strain-pile depth curves of long pile without geogrid under (8±3) kN cyclic load
Fig.10 Pile strain-pile depth curves of long pile with geogrid under(8±3)kN cyclic load
Fig.11 Pile strain-pile depth curves of short pile with and without geogrid under (8±3) kN cyclic load
Fig.12 Pile strain-pile depth curves of long pile with geogrid under cyclic load with different amplitudes
Fig.13 Pile strain-pile depth curves of short pile with geogrid under cyclic load with different amplitudes
Fig.14 Geogrid strain distribution curves under (8±3)kN cyclic load
Fig.15 Geogrid strain-number of load cyclescurves under cyclic load with different amplitudes
[1]   郑刚, 龚晓南, 谢永利, 等 地基处理技术发展综述[J]. 土木工程学报, 2012, 45 (2): 127- 146
ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45 (2): 127- 146
[2]   刘海涛, 谢新宇, 程功, 等 刚-柔性桩复合地基试验研究[J]. 岩土力学, 2005, 26 (2): 303- 306
LIU Hai-tao, XIE Xin-yu, CHENG Gong, et al Experimental study of the rigid-flexible pile composite foundation[J]. Rock and Soil Mechanics, 2005, 26 (2): 303- 306
doi: 10.3969/j.issn.1000-7598.2005.02.028
[3]   李波, 黄茂松, 程岳, 等 路堤荷载下长短桩组合型复合地基现场试验与数值模拟[J]. 中国公路学报, 2013, 26 (1): 9- 14
LI Bo, HUANG Mao-song, CHENG Yue, et al Field test and numerical analysis of composite foundation with long and short piles under embankment[J]. China Journal of Highway and Transport, 2013, 26 (1): 9- 14
doi: 10.3969/j.issn.1001-7372.2013.01.002
[4]   杨鹏, 李照东, 胡永涛, 等 刚柔性桩复合地基加固双层软弱地基现场试验研究[J]. 土木建筑与环境工程, 2018, 40 (6): 1- 8
YANG Peng, LI Zhao-dong, HU Yong-tao, et al Field test of double-layered soft ground improved by rigid-flexible composite pile foundation[J]. Journal of Civil, Architectural and Environmental Engineering, 2018, 40 (6): 1- 8
[5]   YE G B, WANG M, ZHANG Z, et al Geosynthetic-reinforced pile-supported embankments with caps in a triangular pattern over soft clay[J]. Geotextiles and Geomembranes, 2020, 48 (1): 52- 61
doi: 10.1016/j.geotexmem.2019.103504
[6]   郎瑞卿, 闫澍旺, 赵栋 多层加筋垫层刚性桩网复合地基的承载特性[J]. 土木与环境工程学报(中英文), 2019, 41 (3): 49- 57
LANG Rui-qing, YAN Shu-wang, ZHAO Dong Analysis of bearing capacity of rigid pile-net composite foundation with multi-layer reinforced cushion[J]. Journal of Civil and Environmental Engineering, 2019, 41 (3): 49- 57
[7]   芮瑞, 夏元友 桩-网复合地基与桩承式路堤的对比数值模拟[J]. 岩土工程学报, 2007, 29 (5): 769- 772
RUI Rui, XIA Yuan-you Numerical simulation and comparison of pile-net composite foundation with pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (5): 769- 772
doi: 10.3321/j.issn:1000-4548.2007.05.023
[8]   曹卫平, 陈仁朋, 陈云敏 桩承式加筋路堤土拱效应试验研究[J]. 岩土工程学报, 2007, 29 (3): 436- 441
CAO Wei-ping, CHEN Ren-peng, CHEN Yun-min Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (3): 436- 441
doi: 10.3321/j.issn:1000-4548.2007.03.021
[9]   费康, 陈毅, 王军军 加筋形式对桩承式路堤工作性状影响的试验研究[J]. 岩土工程学报, 2012, 34 (12): 2312- 2317
FEI Kang, CHEN Yi, WANG Jun-jun Experimental study on influence of reinforcing modes on behavior of piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (12): 2312- 2317
[10]   WANG H L, CHEN R P, LIU Q W, et al Investigation on geogrid reinforcement and pile efficacy in geosynthetic-reinforced pile-supported track-bed[J]. Geotextiles and Geomembranes, 2019, 47 (6): 755- 766
doi: 10.1016/j.geotexmem.2019.103489
[11]   XING H F, ZHANG Z, LIU H B, et al Large-scale tests of pile-supported earth platform with and without geogrid[J]. Geotextiles and Geomembranes, 2014, 42 (1): 586- 598
[12]   曹新文, 卿三惠, 周立新 桩网复合地基土工格栅加筋效应的试验研究[J]. 岩石力学与工程学报, 2006, 25 (1): 3162- 3167
CAO Xin-wen, QING San-hui, ZHOU Li-xin Experimental study on reinforcement effect of geogrid on composite foundation with dry jet mixing piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (1): 3162- 3167
[13]   白顺果, 侯永峰, 张鸿儒 循环荷载下柔性桩复合地基永久沉降影响因素的试验研究[J]. 岩土工程学报, 2010, 32 (8): 1309- 1313
BAI Shun-guo, HOU Yong-feng, ZHANG Hong-ru Experimental study on influence factors for permanent settlement of composite ground with flexible piles under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (8): 1309- 1313
[14]   高昂, 张孟喜, 朱华超, 等 循环荷载及静载下土工格室加筋路堤模型试验研究[J]. 岩土力学, 2016, 37 (7): 1921- 1928
GAO Ang, ZHANG Meng-xi, ZHU Hua-chao, et al Model tests on geocell-reinforced embankment under cyclic and static loadings[J]. Rock and Soil Mechanics, 2016, 37 (7): 1921- 1928
[15]   牛婷婷, 刘汉龙, 丁选明, 等 高铁列车荷载作用下桩网复合地基振动特性模型试验[J]. 岩土力学, 2018, 39 (3): 872- 880
NIU Ting-ting, LIU Han-long, DING Xuan-ming, et al Piled embankment model test on vibration characteristics under high-speed train loads[J]. Rock and Soil Mechanics, 2018, 39 (3): 872- 880
[16]   ALAM M J I, GNANENDRAN C T, LO S R Experimental and numerical investigations of the behaviour of footing on geosynthetic reinforced fill slope under cyclic loading[J]. Geotextiles and Geomembranes, 2018, 46 (6): 848- 859
doi: 10.1016/j.geotexmem.2018.08.001
[17]   WANG J Q, ZHANG L L, XUE J F, et al Load-settlement response of shallow square footings on geogrid-reinforced sand under cyclic loading[J]. Geotextiles and Geomembranes, 2018, 46 (5): 586- 596
doi: 10.1016/j.geotexmem.2018.04.009
[18]   MOGHADDAS T S N, DAWSON A R Behaviour of footings on reinforced sand subjected to repeated loading: comparing use of 3D and planar geotextile[J]. Geotextiles and Geomembranes, 2010, 28 (5): 434- 447
doi: 10.1016/j.geotexmem.2009.12.007
[19]   MOGHADDAS T S N, DAWSON A R A comparison of static and cyclic loading responses of foundations on geocell-reinforced sand[J]. Geotextiles and Geomembranes, 2012, 32: 55- 68
doi: 10.1016/j.geotexmem.2011.12.003
[20]   蔡袁强, 赵莉, 曹志刚, 等 不同频率循环荷载下公路路基粗粒填料长期动力特性试验研究[J]. 岩石力学与工程学报, 2017, 36 (5): 1238- 1246
CAI Yuan-qiang, ZHAO Li, CAO Zhi-gang, et al Experimental study on dynamic characteristics of unbound granular materials under cyclic loading with different frequencies[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (5): 1238- 1246
[21]   浙江省住房和城乡建设厅. 复合地基技术规范: GBT 50783-2012 [S]. 北京: 中国计划出版社, 2012: 71-74.
[22]   中交路桥技术有限公司. 公路沥青路面设计规范: JTG D50—2017 [S]. 北京: 人民交通出版社股份有限公司, 2017: 44-45.
[23]   杨龙才, 郭庆海, 周顺华, 等 高速铁路桥桩在轴向循环荷载长期作用下的承载和变形特性试验研究[J]. 岩石力学与工程学报, 2005, 24 (13): 2362- 2368
YANG Long-cai, GUO Qing-hai, ZHOU Shun-hua, et al Dynamic behaviors of pile foundation of high-speed railway bridge under long-term cyclic loading in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (13): 2362- 2368
doi: 10.3321/j.issn:1000-6915.2005.13.027
[24]   LI L H, CUI F L, FERREIRA P, et al Experimental study of embankments with different reinforcement materials and spacing between layers[J]. Geotextiles and Geomembranes, 2019, 47 (4): 477- 482
doi: 10.1016/j.geotexmem.2019.03.003
[25]   高昂, 张孟喜, 刘芳, 等 分级循环荷载下土工格室加筋路堤模型试验研究[J]. 岩土力学, 2016, 37 (8): 2213- 2221
GAO Ang, ZHANG Meng-xi, LIU Fang, et al Model experimental study of embankment reinforced with geocells under stepped cyclic loading[J]. Rock and Soil Mechanics, 2016, 37 (8): 2213- 2221
[1] Jiang-bo XU,Yuan-zhi WANG,Yu QI,Bao-hua CAO,Yong-zhen LUO,Chang-gen YAN,Xiao-hua YANG,Han BAO,Yu-zhou XIANG. Deformation characteristics of fiber-reinforced foam lightweight soil under cyclic loading and unloading[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 111-117.
[2] Qing-qing ZHENG,Tang-dai XIA,Meng-ya ZHANG,Fei ZHOU. Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 889-898.
[3] Ya-feng LI,Ru-song NIE,Wu-ming LENG,Long-hu CHENG,Hui-hao MEI,Jun-li DONG. Deformation characteristics of fine-grained soil under cyclic dynamic loading with intermittence[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2109-2119.
[4] LIU Jun-wei, ZHU Na, WANG Li-zhong, SHANG Wen-chang. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1123-1130.
[5] ZHUANG Yan, CHENG Xin-ting, XIAO Heng-lin, LIU Huan-zi, ZHOU Bei-he, LI Jia-jun. Working performance of reinforced cushion in piled embankment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2279-2284.
[6] JIN Wei feng,ZHANG Li you,CHEN Xiao liang,CHENG Ze hai. Study on liquefaction simulation of coupled particle-fluid assembly subject to bi-directional cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2135-2142.
[7] WANG Jiao-jiao, SHI Yong-jiu, WANG Yuan-qing, PAN Peng, MAKINO Toshio, QI Xue. Experimental study on low yield point steel LYP100 under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1401-1409.
[8] WANG Tong, XIE Xu, TANG Zhan-zhan, SHEN Chi. Modified two-surface steel hysteretic model considering complex strain history[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1305-1312.
[9] YU Zhi-wu, PENG Xiao-dan,GUO Wei, PENG Miao-pei. Seismic performance of precast concrete shear wall with U-type reinforcements ferrule connection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 975-984.
[10] HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, ZHANG Xiao-dong. Application of degradation stiffness model in analysis of cumulative lateral displacement of monopile foundation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 721-726.
[11] WANG Zhong-jin, XIE Xin-yu, FANG Peng-fei,LI Jin-zhu, JIN Wei-liang. Analysis for calculation of nonlinear settlement of rigid long-short compound piles[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 463-470.
[12] LIN Cheng, WANG Jin-chang, HU Rong. Deformation of asphalt pavement considering performance degradation of cement-stabilized macadam[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2238-2245.
[13] HU Ya-yuan. Settlement of soft ground induced by cycle load considering
secondary settlement
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 106-111.
[14] WANG Jun, ZHENG Xiao, CA Yuan-Jiang, GUO Lin. Experimental research on static and dynamic characteristics of
cement soil under strain control
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1857-1862.