Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (12): 2279-2284    DOI: 10.3785/j.issn.1008-973X.2018.12.005
Civil Engineering     
Working performance of reinforced cushion in piled embankment
ZHUANG Yan1,2, CHENG Xin-ting2, XIAO Heng-lin3, LIU Huan-zi2, ZHOU Bei-he2, LI Jia-jun2
1. School of Civil Engineering, Key Laboratory for RC and PRC Structures of Education Ministry, Southeast University, Nanjing 210096, China;
2. Jiangsu Research Center for Geotechnical Engineering Technology, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China;
3. School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan 430068, China
Download:   PDF(1476KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimensional finite element model of geosynthetic-reinforced piled embankment was established. The distribution law including the settlement of subsoil surface, the stress of subsoil surface and the strain of geogrid were analyzed by comparing the results of the embankment reinforced by single and multiple layers of geogrid. It is found that the settlement of subsoil surface obviously depends on the total stiffness of geogrid, while is slightly influenced by the number of geogrid layers. Compared with the results of the embankment reinforced by single layer geogrid, three layers geogrid can more obviously reduce the vertical stress acting on the center of subsoil, and therefore resulting in more uniformly distribution of the vertical stress between piles. It also can be observed that the maximum geogrid strain for the bottom layer geogrid is approximately 38% to 50% larger than that of the single layer geogrid under the condition that the total stiffness of geogrid is the same.



Received: 22 November 2017      Published: 13 December 2018
CLC:  TU470  
Cite this article:

ZHUANG Yan, CHENG Xin-ting, XIAO Heng-lin, LIU Huan-zi, ZHOU Bei-he, LI Jia-jun. Working performance of reinforced cushion in piled embankment. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2279-2284.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.12.005     OR     http://www.zjujournals.com/eng/Y2018/V52/I12/2279


桩承式路堤中加筋褥垫层的工作性状

建立桩承式加筋路堤三维有限元模型,对比分析多层土工格栅与单层土工格栅情况下软土表面沉降、软土表面竖向应力与加筋体应变的分布规律.研究发现:软土表面的沉降仅与土工格栅的总强度有关,而土工格栅的层数对软土表面的沉降影响不大;对比单层与三层加筋体模型结果可知,三层加筋体能更明显地减小作用在软土中心的竖向应力,从而使得两桩之间的竖向应力分布更加均匀.在土工格栅总强度相同的情况下,多层加筋体底层土工格栅的最大应变是单层加筋体的1.38~1.50倍.

[1] 陈福全, 李阿池. 桩承式加筋路堤的改进设计方法研究[J]. 岩土工程学报, 2007, 29(12):1804-1808 CHEN Fu-quan, LI A-chi. Improved design method of geosynthetic reinforced pile supported embankments on soft soil[J]. Chinese Journal of Engineering, 2007, 29(12):1804-1808
[2] ZHANG L, ZHAO M H, HE W. Working mechanism of two direction reinforced composite foundation[J]. Journal of Central South University of Technology, 2007, 14(4):589-594.
[3] 李波, 黄茂松, 叶观宝. 加筋桩承式路堤的三维土拱效应分析与试验验证[J]. 中国公路学报, 2012, 25(1):13-20 LI Bo, HUANG Mao-song, YE Guan-bao. Analysis of three-dimensional soil arching effect of pile-supported embankment with geosynthetics and its test verification[J]. China Journal of Highway and Transport, 2012, 25(1):13-20
[4] 陈毅, 王军军, 郑乾. 桩承式加筋路堤中加筋体的计算方法研究现状[J]. 水利与建筑工程学报, 2012, 10(3):46-51 CHEN Yi, WANG Jun-jun, ZHENG Qian. Overview for calculation methods of reinforced body in reinforced pile-supported embankment[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(3):46-51
[5] 曹卫平, 胡伟伟. 桩承式加筋路堤三维土拱效应试验研究[J]. 岩土力学, 2014, 35(2):351-358 CAO Wei-ping, HU Wei-wei. Experimental study of 3D soil arching in piled reinforced embankments[J]. Rock and Soil Mechanics, 2014, 35(2):351-358
[6] 陈仁朋, 汪焱卫, 陈金苗, 等. 桩承式加筋路堤土拱及格栅受力模型试验研究[J]. 地下空间与工程学报, 2014, 10(6):1275-1280 CHEN Ren-peng, WANG Yan-wei, CHEN Jin-miao, et al. Experimental study on behaviors of soil arch and geogrid in a gile-supported reinforced embankment[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(6):1275-1280
[7] 徐超, 宋世彤. 桩承式加筋路堤土拱效应的缩尺模型试验研究[J]. 岩石力学与工程学报, 2015(增2):4343-4350 XU Chao, SONG Shi-tong. Scaled model tests of soil arching effect in geosynthetic reinforced and pile supported embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(Suppl.2):4343-4350
[8] ROGBECK Y, GUSTAVSSON S, SODERGREN I, et al. Reinforced piled embankments in Sweden-design aspects[C]//Proceedings of the Sixth International Conference on Geosynthetics. Atlanta:[s.n.], 1998:755-762.
[9] GUIDO V A, KNUEPPEL J D, SWEENEY M A. Plate loading tests on geogrid-reinforced earth slabs[C]//Proceedings Geosynthetics'87 Conference. New Orleans:[s.n.], 1987:216-225.
[10] MADDISON J D, JONES D B, BELL A L et al. Design and performance of an embankment supported using low strength geogrids and vibro concrete columns[M]//Geosynthetics:Applications, Design and Construction, De Groot, Den Hoedt and Termaat (Eds). Netherland:Elsevier, 1996:325-332.
[11] ZHUANG Y. Numerical modelling of arching in piled embankments including the effects of reinforcement and subsoil[D]. Nottingham:University of Nottingham, 2009.
[12] 胡启军, 谢强, 卿三惠. 加筋碎石垫层中双层土工格栅拉力特性试验研究[J]. 岩土力学, 2007, 28(4):799-802 HU Qi-jun, XIE Qiang, QING San-hui. Field study of tensile force character of double-layered geogrid in reinforced gravel cushion[J]. Rock and Soil Mechanics, 2007, 28(4):799-802
[13] 陈昌富, 周志军. 桩承式多层水平加筋复合地基受力与变形分析[J]. 公路交通科技, 2009, 26(6):29-34 CHEN Chang-fu, ZHOU Zhi-jun. Mechanical analysis on multi-layer horizontal reinforced and pile-supported composite ground[J]. Journal of Highway and Transportation Research and Development, 2009, 26(6):29-34
[14] 徐超, 胡荣, 贾斌. 土工格栅加筋土地基平板载荷试验研究[J]. 岩土力学, 2013(9):2515-2520 XU Chao, HU Rong, JIA Bin. Experimental study of geogrid-reinforced soil foundation by plate load test[J]. Rock and Soil Mechanics, 2013(9):2515-2520
[15] BRITISH STANDARD BS8006. Code of practice for strengthened reinforced soils and other fills[S]. London:British Standard Institution, 1995:170-188.
[16] 费康, 刘汉龙. 桩承式加筋路堤的现场试验及数值分析[J]. 岩土力学, 2009, 30(4):1005-1012 FEI Kang, LIU Han-long. Field test study and numerical analysis of a geogrid-reinforced and pile-supported embankment[J]. Rock and Soil Mechanics, 2009, 30(4):1005-1012
[17] ZHUANG Y, ELLIS E A, Yu H S. Three-dimensional finite-element analysis of arching in a piled embankment[J]. Geotechnique, 2012, 62(12):1127-1131.
[18] ZHUANG Y, ELLIS E A. Finite-element analysis of a piled embankment with reinforcement compared with BS 8006 predictions[J]. Geotechnique, 2014, 64(11):910-917.
[19] POTYONDY J G. Skin friction between various soils and construction materials[J]. Geotechnique, 1961, 11(4):339-353.
[20] CHEN R P, XU Z Z, CHEN Y M, et al. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6):777-785.
[21] JONES B M, PLAUT R H, FILZ G M. Analysis of geosynthetic reinforcement in pile-supported embankments. Part I:3D plate model[J]. Geosynthetics International, 2010, 17(2):59-67.
[22] HALVORDSON K A, PLAUT R H, FILZ G M. Analysis of geosynthetic reinforcement in pile-supported embankments, Part Ⅱ:3D cable-net model[J]. Geosynthetics International, 2010, 17(2):68-76.
[23] BHASI A, RAJAGOPAL K. Geosynthetic-reinforced piled embankments:comparison of numerical and analytical methods[J]. International Journal of Geomechanics, 2015, 15(5):04014074.
[24] MARSTON A. The theory of external loads on closed conduits in the light of the latest experiments[R]. Ames:Iowa Engineering Experiment Station, Iowa State College, 1930.

[1] YU Jian-lin, LONG Yan, XIA Xiao, GONG Xiao-nan. Basal stability for narrow foundation pit[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2165-2174.
[2] WANG E-Jun, ZHANG Wo-Hua. Viscousplastic stochastic finite element method for
foundation engineering under dual flow rule
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 798-805.
[3] LI Jin-Zhu, SHU Xiang-Rong, LIU Yong-Hai. Elastoplastic damage constitutive model and its application to
structural soft soil
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 806-811.