Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 441-447    DOI: 10.3785/j.issn.1008-973X.2021.03.003
    
Quality prediction and process parameter optimization method for machining parts
Yong YU1,2(),Jing-yuan XUE1,Sheng DAI1,Qiang-wei BAO1,Gang ZHAO1,3
1. School of Mechanics and Automation, Beihang University, Beijing 100191, China
2. Beijing Engineering Technological Research Center of High-Efficient and Green CNC Machining Process, Beijing 100191, China
3. Key Laboratory of Aeronautics Smart Manufacturing, Beihang University, Beijing 100191, China
Download: HTML     PDF(1052KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel method based on machine learning algorithms was proposed to realize the quality prediction and the process parameter optimization, in order to reuse the process information and the inspection information of machining parts effectively. A model-based definition (MBD) model which was integrated with process information and inspection information was treated as input. Process and inspection parameter extraction based on the MBD model was developed and the corresponding structured data set was established through the secondary development of three-dimensional modeling software. Several classifiers in machine learning were used to construct the quality prediction model based on process parameters and quality classification labels. Combining the information gain algorithm, after sorting all process parameters, the process parameter that had the greatest impact on quality was selected. Quality prediction and process parameter optimization tool set was developed to realize the optimization of the selected parameter by using the gradient boost decision tree algorithm. The validity and the reliability of the proposed method were verified by the milling experiment data provided by an aviation company. Results show that the proposed method can realize the quality prediction and process parameter optimization of machining parts effectively.



Key wordsmodel-based definition (MBD)      machining parts      process information      inspection information      quality prediction      process parameter optimization      machine learning     
Received: 31 October 2019      Published: 25 April 2021
CLC:  TP 391  
Fund:  工信部相关专项科研技术研究资助项目(**-2017-*-**)
Cite this article:

Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.003     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/441


机加零件质量预测与工艺参数优化方法

为了有效利用机加零件工艺信息和检测信息,提出基于机器学习算法的质量预测与工艺参数优化方法. 以集成工艺信息和检测信息的基于模型定义(MBD)模型为输入,通过对三维建模软件的二次开发实现参数提取,并建立结构化数据集. 利用多种机器学习分类器构建基于工艺参数与质量分类标签的质量预测模型. 结合信息增益算法对所有工艺参数进行优先级排序,筛选出对质量影响最大的工艺参数;开发质量预测与工艺参数优化工具集,利用梯度提升树模型优化对质量影响最大的工艺参数. 以某航空企业提供的铣削实验数据验证所提出方法的有效性和可靠性. 验证结果表明,该方法能够较好地实现机加零件的质量预测和工艺参数优化.


关键词: 基于模型定义(MBD),  机加零件,  工艺信息,  检测信息,  质量预测,  工艺参数优化,  机器学习 
i 工艺参数1 工艺参数2 $\cdots$ 工艺参数 $n$ 零件质量标签
0 $x_1^{(0)}$ $x_2^{(0)}$ $\cdots $ $x_n^{(0)}$ ${L^{(0)}}$
1 $x_1^{(1)}$ $x_2^{(1)}$ $\cdots $ $x_n^{(1)}$ ${L^{(1)}}$
$\vdots $ $\vdots$ $\vdots$ $ $ $\vdots$ $\vdots$
m $x_1^{(m)}$ $x_2^{(m)}$ $\cdots $ $x_n^{(m)}$ ${L^{(m)}}$
Tab.1 Structured data format for part quality prediction
Fig.1 Part quality predict process
i 工艺参数1 $\cdots $ 工艺参数 $n$ 零件质量标签 工艺参数 $o$
0 $x_1^{(0)}$ $\cdots $ $x_n^{(0)}$ ${L^{(0)}}$ $x_o^{(0)}$
1 $x_1^{(1)}$ $\cdots $ $x_n^{(1)}$ ${L^{(1)}}$ $x_o^{(1)}$
$\vdots $ $\vdots $ $\vdots$ $\vdots$ $\vdots$ $\vdots$
m $x_1^{(m)}$ $\cdots $ $x_n^{(m)}$ ${L^{(m)}}$ $x_o^{(m)}$
Tab.2 Structured data format for process parameter optimization
Fig.2 Systematic framework for quality prediction and process parameter optimization of machining parts
工艺参数 信息增益
径向切深 0.022 702 294
轴向切深 0.141 402 794
主轴转速 0.240 937 382
Tab.3 Calculation results of information gain
Fig.3 Structure data format for inspection information
Fig.4 Structure data format for processing information
Fig.5 MBD model integrated with processing and inspection information
Fig.6 Extraction process of processing and inspection information
Fig.7 User interface of toolset for quality prediction and process parameter optimization of parts
模型名称 十折交叉验证平均准确率
LR 0.658 0
SVM 0.813 2
XGBoost 0.828 8
GBDT+LR 0.863 1
Tab.4 Accuracy of selected four classifiers
数据
编号
径向
切深
轴向
切深
主轴
转速
表面粗
糙度
原始质量
标签
预测零件
质量
0 4.2 2.2 13500 3.62 0 0
1 4.2 2.2 14000 3.23 0 0
2 4.2 2.2 14500 3.14 1 1
3 4.2 2.2 15000 2.95 1 1
4 4.2 2.2 15500 3.01 1 1
Tab.5 Part quality predict result
Fig.8 Optimization results of processing parameters
[1]   QUINTANA V, RIVEST L, PELLERIN R, et al Will model-based definition replace engineering drawings throughout the product lifecycle? A global perspective from aerospace industry[J]. Computers in Industry, 2010, 61 (5): 497- 508
doi: 10.1016/j.compind.2010.01.005
[2]   ALEMANNI M, DESTEFANIS F, VEZZETTI E Model-based definition design in the product lifecycle management scenario[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52 (1–4): 1- 14
doi: 10.1007/s00170-010-2699-y
[3]   HEDBERG T, LUBELL J, FISCHER L, et al Testing the digital thread in support of model-based manufacturing and inspection[J]. Journal of Computing and Information Science in Engineering, 2016, 16 (2): 1- 10
[4]   于勇, 范胜廷, 彭关伟, 等 数字孪生模型在产品构型管理中应用探讨[J]. 航空制造技术, 2017, 526 (7): 41- 45
YU Yong, FAN Sheng-ting, PENG Guan-wei, et al Study on application of digital twin model in product configuration management[J]. Aeronautical Manufacturing Technology, 2017, 526 (7): 41- 45
[5]   于勇, 胡德雨, 戴晟, 等 数字孪生在工艺设计中的应用探讨[J]. 航空制造技术, 2018, 61 (18): 26- 33
YU Yong, HU De-yu, DAI Sheng, et al Study on application of digital twin in process planning[J]. Aeronautical Manufacturing Technology, 2018, 61 (18): 26- 33
[6]   于勇, 周阳, 曹鹏, 等 基于MBD模型的工序模型构建方法[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1025- 1034
YU Yong, ZHOU Yang, CAO Peng, et al In-process model construction method based on model-based definition model[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1025- 1034
[7]   田富君, 田锡天, 耿俊浩, 等 基于模型定义的工艺信息建模及应用[J]. 计算机集成制造系统, 2012, 18 (5): 913- 919
TIAN Fu-jun, TIAN Xi-tian, GENG Jun-hao, et al Model-based definition process information modeling and application[J]. Computer Integrated Manufacturing Systems, 2012, 18 (5): 913- 919
[8]   胡祥涛, 程五四, 陈兴玉, 等 基于MBD的产品信息全三维标注方法[J]. 华中科技大学学报: 自然科学版, 2012, 40 (Suppl.2): 60- 63
HU Xiang-tao, CHENG Wu-si, CHEN Xing-yu, et al Full 3D annotation of product information based on MBD[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2012, 40 (Suppl.2): 60- 63
[9]   叶柏超. 基于MBD的检测工艺模型定义与表达[D]. 沈阳: 沈阳航空航天大学, 2016: 10-11.
YE Bai-chao. Expression and definition of inspection process model based on MBD [D]. Shenyang: Shenyang Aerospace University, 2016: 10-11.
[10]   毛贝, 刘志存, 梅中义 基于MBD的工艺模型集成化建模与表达[J]. 现代制造工程, 2017, (5): 102- 109
MAO Bei, LIU Zhi-cun, MEI Zhong-yi Integrated modeling and expression of the process model definition based on MBD[J]. Modern Manufacturing Engineering, 2017, (5): 102- 109
[11]   TIRKEL I. Cycle time prediction in wafer fabrication line by applying data mining methods [C]// 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Piscataway: IEEE, 2011: 1-5.
[12]   朱雪初, 乔非 基于工业大数据的晶圆制造系统加工周期预测方法[J]. 计算机集成制造系统, 2017, 23 (10): 2172- 2179
ZHU Xue-chu, QIAO Fei Cycle time prediction method of wafer fabrication system based on industrial big data[J]. Computer Integrated Manufacturing Systems, 2017, 23 (10): 2172- 2179
[13]   汪俊亮, 秦威, 张洁 基于数据挖掘的晶圆制造交货期预测方法[J]. 中国机械工程, 2016, 27 (1): 105- 108
WANG Jun-liang, QIN Wei, ZHANG Jie Data mining for orders' LT forecasting in wafer fabrication[J]. China Mechanical Engineering, 2016, 27 (1): 105- 108
doi: 10.3969/j.issn.1004-132X.2016.01.017
[14]   ABAJO N, DIEZ A B, LOBATO V, et al. ANN quality diagnostic models for packaging manufacturing: an industrial data mining case study [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004: 799-804.
[15]   SHANNON C E A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27 (3): 379- 423
doi: 10.1002/j.1538-7305.1948.tb01338.x
[16]   BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers [C]// Proceedings of the 5th Annual Workshop on Computational Learning Theory. New York: ACM, 1992: 144-152.
[17]   CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
[18]   FRIEDMAN J H Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29 (5): 1189- 1232
[19]   HE X, PAN J, JIN O, et al. Practical lessons from predicting clicks on ads at facebook [C]// Proceedings of the 8th International Workshop on Data Mining for Online Advertising. New York: ACM, 2014: 1-9.
[20]   牛晓太 基于KNN 算法和10折交叉验证法的支持向量选取算法[J]. 华中师范大学学报: 自然科学版, 2014, 48 (3): 335- 338
NIU Xiao-tai Support vector extracted algorithm based on KNN and 10 fold cross-validation method[J]. Journal of Huazhong Normal University: Natural Sciences, 2014, 48 (3): 335- 338
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[3] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[4] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[5] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[6] Zhi-yuan WAN,Jia-heng TAO,Jia-kun LIANG,Zhen-gong CAI,Cheng CHANG,Lin QIAO,Qiao-ni ZHOU. Large-scale empirical study on machine learning related questions on Stack Overflow[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 819-828.
[7] Dong-xiang KE,Li-min PAN,Sen-lin LUO,Han-qing ZHANG. Android malicious behavior recognition and classification method based on random forest algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2013-2023.
[8] HU Li-sha, WANG Su-zhen, CHEN Yi-qiang, GAO Chen-long, HU Chun-yu, JIANG Xin-long, CHEN Zhen-yu, GAO Xing-yu. Fall detection algorithms based on wearable device: a review[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1717-1728.
[9] YU Yong, ZHOU Yang, CAO Peng, ZHAO Gang. In-process model construction method based on model-based definition model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1025-1034.
[10] WANG Hong-kai, CHEN Zhong-hua, ZHOU Zong-wei, LI Ying-ci, LU Pei-ou, WANG Wen-zhi, LIU Wan-yu, YU Li-juan. Evaluation of machine learning classifiers for diagnosing mediastinal lymph node metastasis of lung cancer from PET/CT images[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 788-797.
[11] WU Peng-zhou, YU Hui-min, ZENG Xiong. Object counting based on regularized risk minimization[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1226-1233.