Please wait a minute...
J4  2012, Vol. 46 Issue (4): 622-628    DOI: 10.3785/j.issn.1008-973X.2012.04.008
INSGA-Ⅱ based multi-objective trajectory planning for manipulators
WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027,China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      


A new multi-objective optimization algorithm was proposed to plan the trajectory of manipulators under more objectives,including time optimal,energy optimal,and smoothness optimal.The high-degree B-spline was adopted to construct a continuous path with controllable startstop kinematic parameters which guaranteed the motion performance of manipulators.The improved nondominated sorting genetic algorithm-Ⅱ(INSGA-Ⅱ)was applied to optimize the trajectory of manipulators in order to get a set of Pareto optimal solution aggregate.The algorithm used one-dimensional Logistic mapping to generate the initial populations and infeasibility degree selection to handle the constraints.The results on a six-degree of freedom serial robot manipulator show that high-degree B-spline can get high-degree continuous trajectories.INSGA-II provides an effective approach to do a multi-objective optimal for B-spline and can obtain good distributed Pareto solutions providing more choices for users.

Published: 17 May 2012
CLC:  TP 242.2  
Cite this article:

WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-Ⅱ based multi-objective trajectory planning for manipulators. J4, 2012, 46(4): 622-628.

URL:     OR


针对机械手时间最优、能量最优、平滑性最优等多目标下的轨迹优化问题,设计新的多目标轨迹优化方法.采用高次B样条曲线插值方法,构造机械手高阶连续且起始和终止的运动参数均可指定的关节轨迹, 保证了机械手运动性能.采用改进非支配排序遗传算法 (INSGA-Ⅱ)对机械手轨迹进行优化,得到一组Pareto最优解集,该算法采用一维Logistic映射产生初始种群并利用不可行度选择操作处理约束条件.在6自由度串联机械手上的计算结果表明,采用高次B样条轨迹规划方法可以得到高阶连续的机械手分段轨迹,采用INSGA-II方法可以对B样条轨迹实现有效的多目标寻优,得到理想的Pareto分布,为用户提供较多的选择.

[1] TIAN L F,CURTIS C. An effective robot trajectory planning method using a genetic algorithm [J]. Mechatronics,2004,14(5): 455-470.
[2] 刘松国,朱世强,王宣银,等.基于四元数和B样条的机械手平滑姿态规划器[J].浙江大学学报:工学版,2009,43 (7): 1192-1196.
LIU Songguo,ZHU Shiqiang,WANG Xuanyin,et al.Smooth orientation planner for manipulators based on quaternion and Bspline [J].Journal of Zhejiang University: Engineering Science,2009,43(7): 1192-1196.
[3] ZHA X F,CHEN X Q.Trajectory coordination planning and control for robot manipulators in automated material handling and processing [J].International Journal of Advanced Manufacture Technology,2004,23(11): 831-845.
[4] GASPARETTO A,ZANOTTO V. A new method for smooth trajectory planning of robot manipulators [J].Mechanism and Machine Theory, 2007, 42(4): 455-471.
[5] 谭冠政,徐雄,肖宏峰.工业机器人实时高精度路径跟踪与轨迹规划[J] .中南大学学报:自然科学版,2005,36(1): 102-107.
TAN Guanzheng,XU Xiong,XIAO Hongfeng.Realtime and accurate hand path tracking and joint trajectory planning for industrial robots [J]. Journal of Central South University: Science and Technology,2005,36(1): 102-107.
[6] 朱世强,刘松国,王宣银,等.机械手时间最优脉动连续轨迹规划算法[J].机械工程学报,2010,46(3): 47-52.
ZHU Shiqiang,LIU Songguo,WANG Xuanyin,et al.Timeoptimal and jerkcontinuous trajectory planning algorithm for manipulators [J].Journal of Mechanical Engineering,2010,46(3): 47-52.
[7] DEB K,PRATAP A,AGARWAL S.A fast and elitist multiobjective genetic algorithm: NSGAⅡ[J].IEEE Transactions on Evolutionary Computation, 2002,6(2): 182-197.
[8] SARAVANAN R, RAMABALAN S.Evolutionary minimum cost trajectory planning for industrial robots [J].Journal of Intelligent and Robotic Systems,2008,52(1): 45-77.
[9] SARAVANAN R, RAMABALAN S, BALAMURUGAN C.Evolutionary multicriteria trajectory modeling of industrial robots in the presence of obstacles [J]. Engineering Applications of Artificial Intelligence, 2009, 22 (2): 329-342.
[10] 施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001: 211-254.
[11] LIAO Gwoching,TSAO Tapeng.Application embedded chaos search immune genetic algorithm for shortterm unit commitment [J]. Electric Power Systems Research, 2004,71(2): 135-144.
[12] DEB K.An efficient constraint handling method for genetic algorithm [J].Computer Methods in Applied Mechanics and Engineering,2000,186(2): 311-338.
[13] RUDOLPH G.Convergence analysis of canonical genetic algorithms [J]. IEEE Transactions on Neural Networks, 1994,5(1): 96-101.

[1] CHEN Qing-cheng, ZHU Shi-qiang, WANG Xuan-yin, ZHANG Xue-qun. Inverse kinematics sub-problem solution algorithm for serial robot based on screw theory[J]. J4, 2014, 48(1): 8-14.
[2] WU Wen-xiang, ZHU Shi-qiang, JIN Xing-lai. Dynamic Identification for Robot Manipulators Based on
Modified Fourier Series
[J]. J4, 2013, 47(2): 231-237.
[3] DING Yuan-ming, WANG Xuan-yin. Optimization method of serial manipulator structure[J]. J4, 2010, 44(12): 2360-2364.