Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (3): 614-623    DOI: 10.3785/j.issn.1008-973X.2026.03.017
    
Swarm intelligence optimization of linear active disturbance rejection controller for steer-by-wire system
Xuan WEI1,2(),He HUANG1,2,*(),Lan YANG3,Huifeng WANG1,Tao GAO3
1. School of Electronic and Control Engineering, Chang'an University, Xi’an 710064, China
2. Key Laboratory of Intelligent Expressway Information Fusion and Control, Chang’an University, Xi’an 710064, China
3. School of Information Engineering, Chang’an University, Xi’an 710064, China
Download: HTML     PDF(2483KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A linear active disturbance rejection controller (LADRC) method based on a multi-strategy enhanced parrot optimization (GOGS-PO) algorithm was proposed in order to address the issues of poor adaptability and difficult parameter tuning of the LADRC in steer-by-wire system. A simulation model of vehicle steer-by-wire system utilizing LADRC was established. The performance of the parrot swarm intelligence algorithm was enhanced through four improvement strategies. A mated-pair initialization strategy was designed to improve population distribution uniformity and enhance global exploration capability. A dynamic residence factor was introduced to optimize staying behavior and avoid local optima. The golden sine algorithm was used to refine the fear-of-strangers behavior. The leader mechanism of the salp swarm algorithm was integrated to accelerate convergence. Validation using test functions shows that GOGS-PO outperforms comparative algorithms in both convergence speed and accuracy. The LADRC parameters were optimized by using GOGS-PO in order to improve control performance. Simulation experiments showed that the GOGS-PO-based LADRC method reduced front wheel steering angle tracking error, yaw rate, and peak sideslip angle under complex conditions compared with traditional methods, achieving front wheel steering angle tracking accuracy on the order of 0.02°. Statistical significance tests confirmed that the GOGS-PO-LADRC control strategy ranked first across all evaluation metrics with significant advantage, demonstrating that the method enhanced vehicle handling stability and dynamic response performance.



Key wordssteering by wire (SBW)      linear active disturbance rejection controller (LADRC)      parrot algorithm      parameter tuning      road adhesion coefficient     
Received: 09 April 2025      Published: 04 February 2026
CLC:  TP 301  
Fund:  国家自然科学基金资助项目(52572353);中央高校基本科研业务费资助项目(300102325501);中国交通教育研究会教育科研课题资助项目(JT2024YB444).
Corresponding Authors: He HUANG     E-mail: 2113304060@qq.com;huanghe@chd.edu.cn
Cite this article:

Xuan WEI,He HUANG,Lan YANG,Huifeng WANG,Tao GAO. Swarm intelligence optimization of linear active disturbance rejection controller for steer-by-wire system. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 614-623.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.03.017     OR     https://www.zjujournals.com/eng/Y2026/V60/I3/614


线控转向系统线性自抗扰控制器的群智能优化

针对线控转向系统中线性自抗扰控制器(LADRC)适应性差、参数调整困难的问题,提出基于多策略鹦鹉优化算法(GOGS-PO)的LADRC控制方法. 建立基于LADRC的汽车线控转向系统仿真模型. 通过4项改进策略,提升鹦鹉群智能算法的性能. 设计佳偶双栖初始化策略,提升种群分布的均匀性,增强全局探索能力. 引入动态停留因子,优化停留行为,避免局部最优. 采用黄金正弦算法,优化恐惧陌生人的行为. 融合樽海鞘优化算法的领导者机制,加速收敛. 测试函数的验证表明,GOGS-PO在收敛速度和精度上均优于对比算法. 利用GOGS-PO优化LADRC参数,提升控制性能. 仿真实验表明,在复杂工况下,基于GOGS-PO的LADRC方法相较于传统方法,前轮转角跟踪误差、横摆角速度和质心侧偏角峰值均降低,前轮转角的跟踪精度达到0.02°量级. 在统计显著性测试中,GOGS-PO-LADRC控制策略在所有的评价指标中均排名第一,具有显著性优势,证实该方法提升了车辆的操纵稳定性和动态响应性能.


关键词: 线控转向(SBW),  线性自抗扰控制器(LADRC),  鹦鹉算法,  参数整定,  路面附着系数 
Fig.1 Structure diagram of steer-by-wire system
Fig.2 Working principle of steer-by-wire system
Fig.3 Basic structure diagram of LADRC
Fig.4 Structure diagram of SBW vehicle model
Fig.5 Flowchart of GOGS-PO optimization strategy
函数表达式取值范围
Sphere$f({\boldsymbol{x}}) = \displaystyle \sum\nolimits_{i = 1}^n {x_i^2} $[?100,100]n
Schwefel 2.22$f({\boldsymbol{x}}) = \displaystyle \sum\nolimits_{i = 1}^n {\left| {{x_i}} \right|} + \displaystyle \prod\nolimits_{i = 1}^n {\left| {{x_i}} \right|} $[?10,10]n
Schwefel 1.2$f({\boldsymbol{x}}) = {\displaystyle \sum\nolimits_{i = 1}^n {\left( {\displaystyle \sum\nolimits_{j = 1}^i {{x_j}} } \right)} ^2}$[?100,100]n
Schwefel 2.21$f({\boldsymbol{x}}) = {\max _i}\left\{ {\left| {{x_i}} \right|,1 \leqslant i \leqslant n} \right\}$[?100,100]n
Schwefel$f({\boldsymbol{x}}) = - \displaystyle \sum\nolimits_{i = 1}^n {\left( {{x_i}\sin {\sqrt {\left| {{x_i}} \right|} } } \right)} $[?500,500]n
Ackley$\begin{gathered} f({\boldsymbol{x}}) = - 20\exp \left( { - 0.2\sqrt {{n}^{-1}\sum\nolimits_{i = 1}^n {x_i^2} } } \right) - \exp \left( {{n}^{-1}\sum\nolimits_{i = 1}^n {\cos\; (2{\text{π}}{x_i}}) } \right)+20+{\text{e}} \\ \end{gathered} $[?32,32]n
Tab.1 Benchmark function for algorithm performance test
Fig.6 Convergence curve of test function
Fig.7 Parameter tuning process of GOGS-PO-LADRC
参数数值
整车总质量m/kg1430
前轴到质心距离a/m1.05
后轴到质心距离b/m1.61
质心高度h/m0.65
转向电机轴转动惯量Jm/(kg?m2)0.00087
转向电机轴阻尼系数Bm/(N?m?(rad?s ?1 ) ?1)0.00021
转向电机轴扭转刚度Km/(N?m?rad?1)176
齿条质量mr/kg2.25
齿条的阻尼系数Br/(N?m?(rad?s ?1 ) ?1)635
Tab.2 Main parameter of vehicle
Fig.8 Simulation curve of double-shift line condition
Fig.9 Simulation of different control strategy for slippery pavement
Fig.10 Simulation of different control strategy for ice pavement
控制策略ωmax/(rad·s?1)$ \beta_{\mathrm{max}} $/rade/(°)
PID0.3526380.02768961.26800
LADRC0.3456560.02266320.89220
PSO-LADRC0.3360770.01927350.80180
PO-LADRC0.3242530.01585510.73550
GOGS-PO-LADRC0.3177730.01477660.01981
Tab.3 Simulation parameter of different control strategy on slippery road
控制策略ωmax/(rad·s?1)$ \beta _{\mathrm{max}}$/rade/(°)
PID0.1601510.01945180.41410
LADRC0.1593810.01826260.53870
PSO-LADRC0.1568550.01779650.54020
PO-LADRC0.1560940.01736650.48620
GOGS-PO-LADRC0.1558330.01707970.02122
Tab.4 Simulation parameter of different control strategy on icy road
Fig.11 Simulation of different control strategies on slippery uphill road
控制策略ωmax /(rad·s?1)$ \beta_{\mathrm{max}} $/rad
PID0.5121180.0889732
LADRC0.4141360.0595344
PSO-LADRC0.3429740.0394133
PO-LADRC0.3391480.0329730
GOGS-PO-LADRC0.3310590.0271803
Tab.5 Simulation parameter of different control strategies on slippery uphill road
控制策略平均排名Nemenyi
分组
显著性结论
GOGS-PO-LADRC1.00A显著最优
PO-LADRC2.13A B与最优无显著差异
PSO-LADRC3.07B C中等性能
LADRC3.93C D显著次于前两名
PID4.87D显著最差
Tab.6 Test result with peak yaw rate as evaluation metric
控制策略平均排名Nemenyi 分组显著性结论
GOGS-PO-LADRC1.2A显著最优
PO-LADRC2.1A B与最优无显著差异
PSO-LADRC3.0B C中等性能
LADRC4.0C D显著次于前两名
PID4.7D显著最差
Tab.7 Test result with peak sideslip angle as evaluation metric
控制策略平均排名Nemenyi 分组显著性结论
GOGS-PO-LADRC1.2A显著最优
PO-LADRC2.5A B与最优无显著差异
PSO-LADRC2.8B C中等性能
LADRC4.0C D显著次于前两名
PID4.5D显著最差
Tab.8 Test result with steering angle error as evaluation metric
[1]   LIN J, ZHANG F, SU L, et al Research on variable transmission ratio control method to improve vehicle handling comfort based on steer-by-wire system[J]. Actuators, 2024, 13 (2): 48
doi: 10.3390/act13020048
[2]   HUANG C, LI L, WANG X Comparative study of two types of control loops aiming at trajectory tracking of a steer-by-wire system with Coulomb friction[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235 (1): 16- 31
doi: 10.1177/0954407020946972
[3]   MENG L, SUN C Automatic control method of automobile steering-by-wire based on fuzzy PID[J]. International Journal of Vehicle Information and Communication Systems, 2023, 8 (1/2): 1- 15
doi: 10.1504/IJVICS.2023.131596
[4]   JIN K, XIAO P, YANG D, et al Research on steering-by-wire system motor control based on an improved sparrow search proportional–integral–derivative algorithm[J]. Electronics, 2024, 13 (22): 4553
doi: 10.3390/electronics13224553
[5]   LI Y R, HUANG J M, HE Z M. A nonlinear control method of steering angle following used in steer-by-wire system [J]. Applied Mechanics and Materials, 2012, 190/191: 890–893.
[6]   ZHAO L, CAO Q, HU Y, et al Stability control of steer by wire system based on improved ADRC[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236 (10/11): 2283- 2293
[7]   夏亮, 孙天夫, 李鑫宇, 等 基于线性自抗扰控制技术的伺服控制系统研究[J]. 电气工程学报, 2023, 18 (4): 43- 49
XIA Liang, SUN Tianfu, LI Xinyu, et al Research on servo control system based on linear active disturbance rejection control technology[J]. Journal of Electrical Engineering, 2023, 18 (4): 43- 49
doi: 10.11985/2023.04.005
[8]   HAN D, LI C, SHI Z Attitude autopilot design based on fuzzy linear active disturbance rejection control[J]. Aerospace, 2022, 9 (8): 429
doi: 10.3390/aerospace9080429
[9]   XU J, GUO Y, LIU F, et al Development and experiment of semi-physical simulation platform for space manipulator[J]. Sensors, 2024, 24 (13): 4354
doi: 10.3390/s24134354
[10]   LIAN J, HUI G, MA L, et al Parrot optimizer: algorithm and applications to medical problems[J]. Computers in Biology and Medicine, 2024, 172: 108064
doi: 10.1016/j.compbiomed.2024.108064
[11]   MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163- 191
doi: 10.1016/j.advengsoft.2017.07.002
[12]   刘书翰, 吴晓东, 梁登宇, 等 基于转速参考模型的线控转向主动回正控制[J]. 汽车工程学报, 2025, 15 (1): 108- 115
LIU Shuhan, WU Xiaodong, LIANG Dengyu, et al Active return-to-center control for steer-by-wire systems based on a steering wheel angular speed reference model[J]. Chinese Journal of Automotive Engineering, 2025, 15 (1): 108- 115
doi: 10.3969/j.issn.2095-1469.2025.01.11
[13]   孙有平, 李崧, 何江美, 等 汽车线控转向系统稳定性控制策略研究[J]. 重庆理工大学学报: 自然科学, 2024, (7): 37- 43
SUN Youping, LI Song, HE Jiangmei, et al Research on the stability control strategy of vehicle steer-by-wire system[J]. Journal of Chongqing University of Technology: Natural Science, 2024, (7): 37- 43
[14]   HEINRICH F, KASTE J, KABIL S G, et al Methods for modeling the steering wheel torque of a steer-by-wire vehicle[J]. Automotive and Engine Technology, 2022, 7 (1): 53- 64
[15]   LUO S, ZHANG B, MA J, et al Research on a hierarchical control strategy for anti-lock braking systems based on active disturbance rejection control (ADRC)[J]. Applied Sciences, 2025, 15 (3): 1294
doi: 10.3390/app15031294
[16]   LU Z An adaptive dung beetle optimization algorithm with golden sine for optimizing numerical unconstrained problems[J]. Current Journal of Applied Science and Technology, 2024, 43 (4): 12- 20
doi: 10.9734/cjast/2024/v43i44365
[17]   XUE J, SHEN B Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336
doi: 10.1007/s11227-022-04959-6
[18]   YUAN C, ZHAO D, HEIDARI A A, et al Polar lights optimizer: algorithm and applications in image segmentation and feature selection[J]. Neurocomputing, 2024, 607: 128427
doi: 10.1016/j.neucom.2024.128427
[1] Gang YANG,Yue PAN,Zhaozhuo WANG,Yue XU,Baoren LI. Frequency-domain tuning method for linear active disturbance rejection control parameters of electro-hydraulic servo systems[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2034-2044.
[2] Juncheng WANG,Fahui WANG. Variable weight PSO-Elman neural network based roadadhesion coefficient estimation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 622-634.
[3] XIE Xian-yi, JIN Li-sheng, GAO Lin-lin, XIA Hai-peng. Study on rear wheel active steering control based on variable weight coefficient of LQR[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 446-452.