|
|
|
| Review of environmental heavy metal detection based on microelectrode arrays |
Yiming YU1( ),Wei CAI1,2,*( ),Yi LI3,Wei FU3,Xu YAO1,Tingyi ZHANG1,Shangqi DIAO1,Dan LI1,Songqing LIN1,Yongshun CHEN1 |
1. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2. Advanced Institute of Ocean Research, Southern University of Science and Technology, Shenzhen 518055, China 3. School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
|
Abstract Compared with conventional electrodes, microelectrode arrays have the advantages of high mass transfer rate, high current density and high signal-to-noise ratio. The analysis of environmental samples (such as soil, river and lake water) which are highly susceptible to heavy metal contamination using microelectrode arrays is a hot research spot in the field of heavy metal detection. The detection performance of heavy metals such as zinc, cadmium, lead and copper could be enhanced by utilizing the micro-nano processing technology to construct various structures of microelectrode arrays and combining with the electrochemical voltammetry technology. By optimizing electrode structures and modifying them with sensitive materials like mercury films, gold nanoparticles, graphene and metal-organic frameworks, the detection limits of heavy metals can be further reduced, and the linear ranges can be broadened. The performance of the unique structures and the modified materials of microelectrode arrays in qualitative and quantitative analysis of heavy metals, and the anti-interference capabilities of microelectrode arrays in the detection of real environmental samples were systematically summarized.
|
|
Received: 14 January 2025
Published: 15 December 2025
|
|
|
| Fund: 国家重点研发计划资助项目(2022YFC3104700);广东省珠江人才计划资助项目(2021QN02H436);深圳市自然科学基金资助项目(JCYJ20220530113013030). |
|
Corresponding Authors:
Wei CAI
E-mail: 12332257@mail.sustech.edu.cn;caiw@sustech.edu.cn
|
|
Cite this article:
Yiming YU,Wei CAI,Yi LI,Wei FU,Xu YAO,Tingyi ZHANG,Shangqi DIAO,Dan LI,Songqing LIN,Yongshun CHEN. Review of environmental heavy metal detection based on microelectrode arrays. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 217-230.
URL:
https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.01.021 OR https://www.zjujournals.com/eng/Y2026/V60/I1/217
|
基于微电极阵列的环境重金属检测研究进展
微电极阵列相较于常规电极具有传质速率高、电流密度大、信噪比高等优势,利用微电极阵列分析土壤、河水、湖水等极易受到重金属污染的环境样品是重金属检测领域的研究热点. 采用微纳加工工艺构建不同结构的微电极阵列,结合电化学伏安技术,能够提升对锌、镉、铅、铜等重金属的检测性能. 通过优化电极结构和修饰敏感材料如汞膜、纳米金、石墨烯、金属有机框架等,可以进一步降低重金属检出限并拓宽线性范围. 系统地综述微电极阵列的独特结构与修饰材料在重金属定性和定量分析方面的性能,及其在实际环境样品检测中的抗干扰能力.
关键词:
微电极阵列,
微纳加工,
重金属,
电化学分析,
伏安法
|
|
| [1] |
RAHMAN Z, SINGH V P The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview[J]. Environmental Monitoring and Assessment, 2019, 191 (7): 419
doi: 10.1007/s10661-019-7528-7
|
|
|
| [2] |
VAREDA J P, VALENTE A J M, DURÃES L Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review[J]. Journal of Environmental Management, 2019, 246: 101- 118
doi: 10.1016/j.jenvman.2019.05.126
|
|
|
| [3] |
TIMOTHY N, WILLIAMS E T Environmental pollution by heavy metal: an overview[J]. International Journal of Environmental Chemistry, 2019, 3 (2): 72- 82
doi: 10.11648/j.ijec.20190302.14
|
|
|
| [4] |
BABY J, RAJ J S, BIBY E T, et al Toxic effect of heavy metals on aquatic environment[J]. International Journal of Biological and Chemical Sciences, 2010, 4 (4): 939- 952
|
|
|
| [5] |
UDDIN M M, ZAKEEL M C M, ZAVAHIR J S, et al Heavy metal accumulation in rice and aquatic plants used as human food: a general review[J]. Toxics, 2021, 9 (12): 360
doi: 10.3390/toxics9120360
|
|
|
| [6] |
DURUIBE J O, OGWUEGBU M O C, EGWURUGWU J N Heavy metal pollution and human biotoxic effects[J]. International Journal of Physical Sciences, 2007, 2 (5): 112- 118
|
|
|
| [7] |
VARDHAN K H, KUMAR P S, PANDA R C A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives[J]. Journal of Molecular Liquids, 2019, 290: 111197
doi: 10.1016/j.molliq.2019.111197
|
|
|
| [8] |
HASSAAN M A, EL NEMR A, MADKOUR F F Environmental assessment of heavy metal pollution and human health risk[J]. American Journal of Water Science and Engineering, 2016, 2 (3): 14- 19
|
|
|
| [9] |
GUMPU M B, SETHURAMAN S, KRISHNAN U M, et al A review on detection of heavy metal ions in water: an electrochemical approach[J]. Sensors and Actuators B: Chemical, 2015, 213: 515- 533
doi: 10.1016/j.snb.2015.02.122
|
|
|
| [10] |
CUARTERO M Electrochemical sensors for in-situ measurement of ions in seawater[J]. Sensors and Actuators B: Chemical, 2021, 334: 129635
doi: 10.1016/j.snb.2021.129635
|
|
|
| [11] |
WEBER S G Signal-to-noise ratio in microelectrode-array-based electrochemical detectors[J]. Analytical Chemistry, 1989, 61 (4): 295- 302
doi: 10.1021/ac00179a004
|
|
|
| [12] |
FLEISCHMANN M, PONS S The behavior of microelectrodes[J]. Analytical Chemistry, 1987, 59 (24): 1391A- 1399A
|
|
|
| [13] |
HUANG X J, O’MAHONY A M, COMPTON R G Microelectrode arrays for electrochemistry: approaches to fabrication[J]. Small, 2009, 5 (7): 776- 788
doi: 10.1002/smll.200801593
|
|
|
| [14] |
HOOGERWERF A C, WISE K D A three-dimensional microelectrode array for chronic neural recording[J]. IEEE Transactions on Biomedical Engineering, 1994, 41 (12): 1136- 1146
doi: 10.1109/10.335862
|
|
|
| [15] |
HOWELL K A, ACHTERBERG E P, BRAUNGARDT C B, et al The determination of trace metals in estuarine and coastal waters using a voltammetric in situ profiling system[J]. Analyst, 2003, 128 (6): 734- 741
doi: 10.1039/b300712j
|
|
|
| [16] |
WANG J, BIAN C, LI Y, et al A multi-parameter integrated chip system for water quality detection[J]. International Journal of Modern Physics B, 2019, 33 (7): 1950041
doi: 10.1142/S0217979219500413
|
|
|
| [17] |
XU G, LI X, CHENG C, et al Fully integrated battery-free and flexible electrochemical tag for on-demand wireless in situ monitoring of heavy metals[J]. Sensors and Actuators B: Chemical, 2020, 310: 127809
doi: 10.1016/j.snb.2020.127809
|
|
|
| [18] |
BEATON A D, SCHAAP A M, PASCAL R, et al Lab-on-chip for in situ analysis of nutrients in the deep sea[J]. ACS Sensors, 2022, 7 (1): 89- 98
doi: 10.1021/acssensors.1c01685
|
|
|
| [19] |
DANIEL A, LAËS-HUON A, BARUS C, et al Toward a harmonization for using in situ nutrient sensors in the marine environment[J]. Frontiers in Marine Science, 2020, 6: 773
doi: 10.3389/fmars.2019.00773
|
|
|
| [20] |
EVANS E H, PISONERO J, SMITH C M M, et al Atomic spectrometry update: review of advances in atomic spectrometry and related techniques[J]. Journal of Analytical Atomic Spectrometry, 2020, 35 (5): 830- 851
doi: 10.1039/D0JA90015J
|
|
|
| [21] |
BIRD C L, KUHN A T Electrochemistry of the viologens[J]. Chemical Society Reviews, 1981, 10 (1): 49- 82
doi: 10.1039/cs9811000049
|
|
|
| [22] |
PETROVIC M, FARRÉ M, DE ALDA M L, et al Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples[J]. Journal of Chromatography A, 2010, 1217 (25): 4004- 4017
doi: 10.1016/j.chroma.2010.02.059
|
|
|
| [23] |
GREENBERG R R, BODE P, FERNANDES E A D N Neutron activation analysis: a primary method of measurement[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66 (3/4): 193- 241
|
|
|
| [24] |
HU Q, YANG G, ZHAO Y, et al Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection[J]. Analytical and Bioanalytical Chemistry, 2003, 375 (6): 831- 835
doi: 10.1007/s00216-003-1828-y
|
|
|
| [25] |
COOPER W J, MOEGLING J K, KIEBER R J, et al A chemiluminescence method for the analysis of H2O2 in natural waters[J]. Marine Chemistry, 2000, 70 (1/2/3): 191- 200
|
|
|
| [26] |
MALIK L A, BASHIR A, QUREASHI A, et al Detection and removal of heavy metal ions: a review[J]. Environmental Chemistry Letters, 2019, 17 (4): 1495- 1521
doi: 10.1007/s10311-019-00891-z
|
|
|
| [27] |
RAMACHANDRAN R, CHEN T W, CHEN S M, et al A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules[J]. Inorganic Chemistry Frontiers, 2019, 6 (12): 3418- 3439
doi: 10.1039/C9QI00602H
|
|
|
| [28] |
YANTASEE W, LIN Y, HONGSIRIKARN K, et al Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors[J]. Environmental Health Perspectives, 2007, 115 (12): 1683- 1690
doi: 10.1289/ehp.10190
|
|
|
| [29] |
GUPTA V K, GANJALI M R, NOROUZI P, et al Electrochemical analysis of some toxic metals by ion–selective electrodes[J]. Critical Reviews in Analytical Chemistry, 2011, 41 (4): 282- 313
doi: 10.1080/10408347.2011.589773
|
|
|
| [30] |
HAN H, PAN D Voltammetric methods for speciation analysis of trace metals in natural waters[J]. Trends in Environmental Analytical Chemistry, 2021, 29: e00119
doi: 10.1016/j.teac.2021.e00119
|
|
|
| [31] |
ARIÑO C, BANKS C E, BOBROWSKI A, et al Electrochemical stripping analysis[J]. Nature Reviews Methods Primers, 2022, 2 (1): 62
doi: 10.1038/s43586-022-00143-5
|
|
|
| [32] |
BUFFLE J, TERCIER-WAEBER M L Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements[J]. TrAC Trends in Analytical Chemistry, 2005, 24 (3): 172- 191
doi: 10.1016/j.trac.2004.11.013
|
|
|
| [33] |
BOND A M Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection: a review[J]. Analyst, 1994, 119 (11): 1R- 21R
doi: 10.1039/an994190001r
|
|
|
| [34] |
WIGHTMAN R M Probing cellular chemistry in biological systems with microelectrodes[J]. Science, 2006, 311 (5767): 1570- 1574
doi: 10.1126/science.1120027
|
|
|
| [35] |
DRAGAS J, VISWAM V, SHADMANI A, et al In vitro multi-functional microelectrode array featuring 59 760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels[J]. IEEE Journal of Solid-State Circuits, 2017, 52 (6): 1576- 1590
doi: 10.1109/JSSC.2017.2686580
|
|
|
| [36] |
JONES I L, LIVI P, LEWANDOWSKA M K, et al The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics[J]. Analytical and Bioanalytical Chemistry, 2011, 399: 2313- 2329
doi: 10.1007/s00216-010-3968-1
|
|
|
| [37] |
ORDEIG O, DEL CAMPO J, MUÑOZ F X, et al Electroanalysis utilizing amperometric microdisk electrode arrays[J]. Electroanalysis, 2007, 19 (19/20): 1973- 1986
|
|
|
| [38] |
MCINTYRE C C, GRILL W M Finite element analysis of the current-density and electric field generated by metal microelectrodes[J]. Annals of Biomedical Engineering, 2001, 29: 227- 235
doi: 10.1114/1.1352640
|
|
|
| [39] |
FORSTER R J Microelectrodes: new dimensions in electrochemistry[J]. Chemical Society Reviews, 1994, 23 (4): 289- 297
doi: 10.1039/cs9942300289
|
|
|
| [40] |
DAVIS F, HIGSON S P J. Arrays of microelectrodes: technologies for environmental investigations [J]. Environmental Science: Processes & Impacts, 2013, 15(8): 1477–1489.
|
|
|
| [41] |
蔡巍. 水环境重金属检测微传感器及自动分析仪器的研究[D]. 杭州: 浙江大学, 2012. CAI Wei. Researches on micro electrochemical sensors and automatic analysis instruments for heavy metal detection in aqueous environment [D]. Hangzhou: Zhejiang University, 2012.
|
|
|
| [42] |
CAO Z, SHANG H, WANG Y, et al. Mercury-plated iridium-based microelectrode arrays for trace metal detection [C]// 19th International Conference on Electronic Packaging Technology. Shanghai: IEEE, 2018: 1102–1107.
|
|
|
| [43] |
ONG C S, NG Q H, LOW S C Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals[J]. Monatshefte Für Chemie-Chemical Monthly, 2021, 152 (7): 705- 723
|
|
|
| [44] |
OBIEN M E J, DELIGKARIS K, BULLMANN T, et al Revealing neuronal function through microelectrode array recordings[J]. Frontiers in Neuroscience, 2015, 8: 423
|
|
|
| [45] |
ARRIGAN D W M Nanoelectrodes, nanoelectrode arrays and their applications[J]. Analyst, 2004, 129 (12): 1157- 1165
doi: 10.1039/b415395m
|
|
|
| [46] |
林明月, 潘大为, 张海云, 等 电化学方法检测海水中铁的研究进展[J]. 环境化学, 2015, 34 (3): 536- 544 LIN Mingyue, PAN Dawei, ZHANG Haiyun, et al Advances in the determination of iron in seawater by electrochemical methods[J]. Environmental Chemistry, 2015, 34 (3): 536- 544
doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
|
|
|
| [47] |
GUESHI T, TOKUDA K, MATSUDA H Voltammetry at partially covered electrodes: part I. chronopotentiometry and chronoamperometry at model electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 89 (2): 247- 260
doi: 10.1016/S0022-0728(78)80188-0
|
|
|
| [48] |
HEINEMAN W R, KISSINGER P T Analytical electrochemistry: methodology and applications of dynamic techniques[J]. Analytical Chemistry, 1980, 52 (5): 138- 151
doi: 10.1021/ac50055a019
|
|
|
| [49] |
SLESZYNSKI N, OSTERYOUNG J, CARTER M Arrays of very small voltammetric electrodes based on reticulated vitreous carbon[J]. Analytical Chemistry, 1984, 56 (2): 130- 135
doi: 10.1021/ac00266a004
|
|
|
| [50] |
SUZUKI H Microfabrication of chemical sensors and biosensors for environmental monitoring[J]. Materials Science and Engineering: C, 2000, 12 (1/2): 55- 61
doi: 10.1016/S0928-4931(00)00158-2
|
|
|
| [51] |
FLETCHER S, HORNE M D Random assemblies of microelectrodes (RAM™ electrodes) for electrochemical studies[J]. Electrochemistry Communications, 1999, 1 (10): 502- 512
doi: 10.1016/S1388-2481(99)00100-9
|
|
|
| [52] |
ORDEIG O, BANKS C E, DAVIES T J, et al The linear sweep voltammetry of random arrays of microdisc electrodes: fitting of experimental data[J]. Journal of Electroanalytical Chemistry, 2006, 592 (2): 126- 130
doi: 10.1016/j.jelechem.2006.05.008
|
|
|
| [53] |
NRIAGU J O. Encyclopedia of environmental health [M]. Amsterdam: Elsevier Science, 2011: 801–807.
|
|
|
| [54] |
付静. 水环境重金属检测的电化学传感器的研究[D]. 杭州: 浙江大学, 2007. FU Jing. The research of electrochemical sensors for heavy metals monitoring in water environment [D]. Hangzhou: Zhejiang University, 2007.
|
|
|
| [55] |
赵会欣, 万浩, 蔡巍, 等 用于水污染重金属检测的微电极阵列传感器芯片[J]. 浙江大学学报: 工学版, 2013, 47 (6): 984- 989 ZHAO Huixin, WAN Hao, CAI Wei, et al Microelectrode array sensor chip for detection of heavy metals in water pollution[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (6): 984- 989
|
|
|
| [56] |
TERCIER-WAEBER M L, CONFALONIERI F, ABDOU M, et al Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals[J]. Chemosphere, 2021, 282: 131014
doi: 10.1016/j.chemosphere.2021.131014
|
|
|
| [57] |
CAI W, YU Y, YAO X, et al. Development of a multiparameter sensor chip for in-situ marine ecological monitoring [C]// OCEANS 2024-Singapore. Singapore: IEEE, 2024: 1–4.
|
|
|
| [58] |
WAN H, HA D, ZHANG W, et al Design of a novel hybrid sensor with microelectrode array and LAPS for heavy metal determination using multivariate nonlinear calibration[J]. Sensors and Actuators B: Chemical, 2014, 192: 755- 761
doi: 10.1016/j.snb.2013.11.035
|
|
|
| [59] |
邹绍芳, 范影乐, 王平 基于微电极阵列的自动环境监测电子舌的设计[J]. 仪器仪表学报, 2007, 28 (9): 1641- 1645 ZOU Shaofang, FAN Yingle, WANG Ping Design of MEA-based electronic tongue for automatic environmental monitoring[J]. Chinese Journal of Scientific Instrument, 2007, 28 (9): 1641- 1645
doi: 10.3321/j.issn:0254-3087.2007.09.020
|
|
|
| [60] |
KOUNAVES S P, BUFFLE J Deposition and stripping properties of mercury on iridium electrodes[J]. Journal of the Electrochemical Society, 1986, 133 (12): 2495- 2498
doi: 10.1149/1.2108457
|
|
|
| [61] |
KOUNAVES S P, BUFFLE J An iridium-based mercury-film electrode: part I. selection of substrate and preparation[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 216 (1/2): 53- 69
|
|
|
| [62] |
WU W, CHEN Z Iridium coating: processes, properties and application: part I[J]. Johnson Matthey Technology Review, 2017, 61 (1): 16- 28
doi: 10.1595/205651317X693606
|
|
|
| [63] |
SILVA P R M, EL KHAKANI M A, LE DROGOFF B, et al Mercury-electroplated-iridium microelectrode array based sensors for the detection of heavy metal ultratraces: optimization of the mercury charge[J]. Sensors and Actuators B: Chemical, 1999, 60 (2/3): 161- 167
|
|
|
| [64] |
CAO Z, SHANG H, WANG Y, et al. Gel-integrated mercury-plated microelectrode arrays for trace metal detection [C]// International Conference on Electronics Packaging. Niigata: IEEE, 2019: 279–282.
|
|
|
| [65] |
CHARKIEWICZ A E, OMELJANIUK W J, NOWAK K, et al Cadmium toxicity and health effects: a brief summary[J]. Molecules, 2023, 28 (18): 6620
doi: 10.3390/molecules28186620
|
|
|
| [66] |
GENCHI G, SINICROPI M S, LAURIA G, et al The effects of cadmium toxicity[J]. International Journal of Environmental Research and Public Health, 2020, 17 (11): 3782
doi: 10.3390/ijerph17113782
|
|
|
| [67] |
YAN L J, ALLEN D C Cadmium-induced kidney injury: oxidative damage as a unifying mechanism[J]. Biomolecules, 2021, 11 (11): 1575
doi: 10.3390/biom11111575
|
|
|
| [68] |
BALALI-MOOD M, NASERI K, TAHERGORABI Z, et al Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic[J]. Frontiers in Pharmacology, 2021, 12: 643972
doi: 10.3389/fphar.2021.643972
|
|
|
| [69] |
SUWAZONO Y, KIDO T, NAKAGAWA H, et al Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure[J]. Biomarkers, 2009, 14 (2): 77- 81
doi: 10.1080/13547500902730698
|
|
|
| [70] |
KOKKINOS C, ECONOMOU A, RAPTIS I Microfabricated disposable lab-on-a-chip sensors with integrated bismuth microelectrode arrays for voltammetric determination of trace metals[J]. Analytica Chimica Acta, 2012, 710: 1- 8
doi: 10.1016/j.aca.2011.10.048
|
|
|
| [71] |
BAHINTING S E D, ROLLON A P, GARCIA-SEGURA S, et al Bismuth film-coated gold ultramicroelectrode array for simultaneous quantification of Pb(II) and Cd(II) by square wave anodic stripping voltammetry[J]. Sensors, 2021, 21 (5): 1811
doi: 10.3390/s21051811
|
|
|
| [72] |
SILVA P R M, EL KHAKANI M A, CHAKER M, et al Development of Hg-electroplated-iridium based microelectrode arrays for heavy metal traces analysis[J]. Analytica Chimica Acta, 1999, 385 (1/2/3): 249- 255
|
|
|
| [73] |
XU Y, ZHANG W, SHI J, et al Microfabricated interdigitated Au electrode for voltammetric determination of lead and cadmium in Chinese mitten crab (Eriocheir sinensis)[J]. Food Chemistry, 2016, 201: 190- 196
doi: 10.1016/j.foodchem.2016.01.078
|
|
|
| [74] |
NASCIMENTO V B, AUGELLI M A, PEDROTTI J J, et al Arrays of gold microelectrodes made from split integrated circuit chips[J]. Electroanalysis, 1997, 9 (4): 335- 339
doi: 10.1002/elan.1140090415
|
|
|
| [75] |
CUGNET C, ZAOUAK O, RENÉ A, et al A novel microelectrode array combining screen-printing and femtosecond laser ablation technologies: development, characterization and application to cadmium detection[J]. Sensors and Actuators B: Chemical, 2009, 143 (1): 158- 163
doi: 10.1016/j.snb.2009.07.059
|
|
|
| [76] |
OLIVEIRA M, VISWANATHAN S, MORAIS S, et al Development of polyaniline microarray electrodes for cadmium analysis[J]. Chemical Papers, 2012, 66 (10): 891- 898
|
|
|
| [77] |
BIRARA A, WASHE A P, BAYEH Y, et al Simultaneous quantification of Cd(II) and Pb(II) by bismuth/poly (bromocresol purple) modified screen-printed carbon-electrode in wastewater[J]. International Journal of Electrochemical Science, 2024, 19 (1): 100431
doi: 10.1016/j.ijoes.2023.100431
|
|
|
| [78] |
AKHTAR N, SYAKIR ISHAK M I, BHAWANI S A, et al Various natural and anthropogenic factors responsible for water quality degradation: a review[J]. Water, 2021, 13 (19): 2660
doi: 10.3390/w13192660
|
|
|
| [79] |
REHMAN K, FATIMA F, WAHEED I, et al Prevalence of exposure of heavy metals and their impact on health consequences[J]. Journal of Cellular Biochemistry, 2018, 119 (1): 157- 184
doi: 10.1002/jcb.26234
|
|
|
| [80] |
KIM H C, JANG T W, CHAE H J, et al Evaluation and management of lead exposure[J]. Annals of Occupational and Environmental Medicine, 2015, 27 (1): 30
doi: 10.1186/s40557-015-0085-9
|
|
|
| [81] |
KOUNAVES S P, DENG W, HALLOCK P R, et al Iridium-based ultramicroelectrode array fabricated by microlithography[J]. Analytical Chemistry, 1994, 66 (3): 418- 423
doi: 10.1021/ac00075a017
|
|
|
| [82] |
UHLIG A, PAESCHKE M, SCHNAKENBERG U, et al Chip-array electrodes for simultaneous stripping analysis of trace metals[J]. Sensors and Actuators B: Chemical, 1995, 25 (1/2/3): 899- 903
|
|
|
| [83] |
BELMONT C, TERCIER M L, BUFFLE J, et al Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability[J]. Analytica Chimica Acta, 1996, 329 (3): 203- 214
doi: 10.1016/0003-2670(96)00116-X
|
|
|
| [84] |
DROGOFF B L, EL KHAKANI M A, SILVA P R M, et al Effect of the microelectrode geometry on the diffusion behavior and the electroanalytical performance of Hg-electroplated iridium microelectrode arrays intended for the detection of heavy metal traces[J]. Electroanalysis, 2001, 13 (18): 1491- 1496
doi: 10.1002/1521-4109(200112)13:18<1491::AID-ELAN1491>3.0.CO;2-Z
|
|
|
| [85] |
WANG N, KANHERE E, TRIANTAFYLLOU M S, et al. Shark-inspired MEMS chemical sensor with epithelium-like micropillar electrode array for lead detection [C]// Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems. Anchorage: IEEE, 2015: 1464–1467.
|
|
|
| [86] |
戴金莹, 尹加文, 郜晚蕾, 等 重金属检测微纳传感器芯片批量制备与测试[J]. 微纳电子技术, 2021, 58 (4): 359- 364 DAI Jinying, YIN Jiawen, GAO Wanlei, et al Batch preparation and testing of micro-nano sensor chips for heavy metal detection[J]. Micronanoelectronic Technology, 2021, 58 (4): 359- 364
|
|
|
| [87] |
SIQUEIRA G P, DE FARIA L V, ROCHA R G, et al Nanoporous gold microelectrode arrays using microchips: a highly sensitive and cost-effective platform for electroanalytical applications[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116880
doi: 10.1016/j.jelechem.2022.116880
|
|
|
| [88] |
TU Y, LIN Y, YANTASEE W, et al Carbon nanotubes based nanoelectrode arrays: fabrication, evaluation, and application in voltammetric analysis[J]. Electroanalysis, 2005, 17 (1): 79- 84
doi: 10.1002/elan.200403122
|
|
|
| [89] |
GUPTA P, RAHM C E, JIANG D, et al Parts per trillion detection of heavy metals in as-is tap water using carbon nanotube microelectrodes[J]. Analytica Chimica Acta, 2021, 1155: 338353
doi: 10.1016/j.aca.2021.338353
|
|
|
| [90] |
REHACEK V, HOTOVY I, VOJS M Bismuth-coated diamond-like carbon microelectrodes for heavy metals determination[J]. Sensors and Actuators B: Chemical, 2007, 127 (1): 193- 197
doi: 10.1016/j.snb.2007.07.031
|
|
|
| [91] |
REHACEK V, SHTEREVA K, NOVOTNY I, et al Mercury-plated thin film ITO microelectrode array for analysis of heavy metals[J]. Vacuum, 2005, 80 (1/2/3): 132- 136
|
|
|
| [92] |
AMEH T, SAYES C M The potential exposure and hazards of copper nanoparticles: a review[J]. Environmental Toxicology and Pharmacology, 2019, 71: 103220
doi: 10.1016/j.etap.2019.103220
|
|
|
| [93] |
DE ROMAÑA D L, OLIVARES M, UAUY R, et al Risks and benefits of copper in light of new insights of copper homeostasis[J]. Journal of Trace Elements in Medicine and Biology, 2011, 25 (1): 3- 13
doi: 10.1016/j.jtemb.2010.11.004
|
|
|
| [94] |
FORD E S Serum copper concentration and coronary heart disease among US adults[J]. American Journal of Epidemiology, 2000, 151 (12): 1182- 1188
doi: 10.1093/oxfordjournals.aje.a010168
|
|
|
| [95] |
NOLAN M A, KOUNAVES S P Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry[J]. Analytical Chemistry, 1999, 71 (16): 3567- 3573
doi: 10.1021/ac990126i
|
|
|
| [96] |
WU S, PAN D, YU Z, et al Gold microelectrode arrays based electrode for determination of trace copper in seawater[J]. Asian Journal of Chemistry, 2014, 26 (9): 2741- 2744
doi: 10.14233/ajchem.2014.16454
|
|
|
| [97] |
OROZCO J, FERNÁNDEZ-SÁNCHEZ C, JIMÉNEZ-JORQUERA C Underpotential deposition-anodic stripping voltammetric detection of copper at gold nanoparticle-modified ultramicroelectrode arrays[J]. Environmental Science & Technology, 2008, 42 (13): 4877- 4882
|
|
|
| [98] |
WU Z, WANG J, BIAN C, et al A MEMS-based multi-parameter integrated chip and its portable system for water quality detection[J]. Micromachines, 2020, 11 (1): 63
doi: 10.3390/mi11010063
|
|
|
| [99] |
WANG J, BIAN C, TONG J, et al Microsensor chip integrated with gold nanoparticles-modified ultramicroelectrode array for improved electroanalytical measurement of copper ions[J]. Electroanalysis, 2013, 25 (7): 1713- 1721
doi: 10.1002/elan.201300019
|
|
|
| [100] |
ZHANG J, WU S, ZHANG F, et al Improved microelectrode array electrode design for heavy metal detection[J]. Chemosensors, 2024, 12 (4): 51
doi: 10.3390/chemosensors12040051
|
|
|
| [101] |
QI H, HUANG X, WU J, et al A disposable aptasensor based on a gold-plated coplanar electrode array for on-site and real-time determination of Cu2+[J]. Analytica Chimica Acta, 2021, 1183: 338991
doi: 10.1016/j.aca.2021.338991
|
|
|
| [102] |
DALY R, NARAYAN T, SHAO H, et al Platinum-based interdigitated micro-electrode arrays for reagent-free detection of copper[J]. Sensors, 2021, 21 (10): 3544
doi: 10.3390/s21103544
|
|
|
| [103] |
HOOD S J, KAMPOURIS D K, KADARA R O, et al Why ‘the bigger the better’ is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI)[J]. Analyst, 2009, 134 (11): 2301- 2305
doi: 10.1039/b911507b
|
|
|
| [104] |
ORDEIG O, BANKS C E, DEL CAMPO J, et al Trace detection of mercury(II) using gold ultra-microelectrode arrays[J]. Electroanalysis, 2006, 18 (6): 573- 578
|
|
|
| [105] |
WU Z, CUI T Shrink-induced microelectrode arrays for trace mercury ions detection[J]. IEEE Sensors Journal, 2019, 19 (7): 2435- 2441
doi: 10.1109/JSEN.2018.2887269
|
|
|
| [106] |
方卓. 基于纳米切片法的超微电极制备及其性能测试研究[D]. 哈尔滨: 哈尔滨工业大学, 2024. FANG Zhuo. Research on fabrication and performance testing of ultramicroelectrodes based on nanoskiving method [D]. Harbin: Harbin Institute of Technology, 2024.
|
|
|
| [107] |
BJØRKLUND G, CHARTRAND M S, AASETH J Manganese exposure and neurotoxic effects in children[J]. Environmental Research, 2017, 155: 380- 384
doi: 10.1016/j.envres.2017.03.003
|
|
|
| [108] |
TERCIER-WAEBER M L, BELMONT-HÉBERT C, BUFFLE J Real-time continuous Mn(II) monitoring in lakes using a novel voltammetric in situ profiling system[J]. Environmental Science & Technology, 1998, 32 (10): 1515- 1521
|
|
|
| [109] |
RIZWAN M, USMAN K, ALSAFRAN M Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health[J]. Chemosphere, 2024, 357: 142028
doi: 10.1016/j.chemosphere.2024.142028
|
|
|
| [110] |
WANG J, WANG J, ADENIYI W K, et al Adsorptive stripping analysis of trace nickel at iridium-based ultramicroelectrode arrays[J]. Electroanalysis, 2000, 12 (1): 44- 47
doi: 10.1002/(SICI)1521-4109(20000101)12:1<44::AID-ELAN44>3.0.CO;2-4
|
|
|
| [111] |
XIAO T, GUHA J, BOYLE D, et al Naturally occurring thallium: a hidden geoenvironmental health hazard?[J]. Environment International, 2004, 30 (4): 501- 507
doi: 10.1016/j.envint.2003.10.004
|
|
|
| [112] |
TATSI K, TURNER A, HANDY R D, et al The acute toxicity of thallium to freshwater organisms: implications for risk assessment[J]. Science of the Total Environment, 2015, 536: 382- 390
doi: 10.1016/j.scitotenv.2015.06.069
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|