Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1631-1636    DOI: 10.3785/j.issn.1008-973X.2013.09.018
    
Study on migration and stability of total Cr
 in tannery sludge by thermal hydrolysis treatment
FU Cheng-long, MA Hong-lei, CHI Yong, YAN Jian-hua, NI Ming-jiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The migration characteristics and leaching toxicity of  total Cr in tannery sludge were studied at different thermal hydrolysis temperatures and acid conditions. The results show that pH plays a leading role in migration of Cr from solid phase to liquid phase. At pH=2.5 and 1.5 adjusted by H2SO4, the migration rate of Cr can reach 56% and 91% at room temperature. The rise of thermal hydrolysis temperature will worsen the migration of Cr to hydrolysate.  At pH of 2.5, the concentration of Cr in hydrolysate is reduced over 70% at 180 °C compared to room temperature. Thermal hydrolysis promotes the stability of Cr, and the leaching toxicity of Cr is significantly reduced as temperature rises. At 180 °C, the stabilization rate of Cr increases to 93.2%, while at room temperature it is only 50.8%. By H2SO4 extraction at room temperature and subsequently thermal hydrolysis, this combined method obtains good results of the migration and stability of Cr: more than 90% of Cr is dissolved into liquid phase, the leaching toxicity of Cr is lowered evidently and the stabilization rate is more than 95%.



Published: 01 September 2013
CLC:  X 705  
Cite this article:

FU Cheng-long, MA Hong-lei, CHI Yong, YAN Jian-hua, NI Ming-jiang. Study on migration and stability of total Cr
 in tannery sludge by thermal hydrolysis treatment. J4, 2013, 47(9): 1631-1636.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.09.018     OR     http://www.zjujournals.com/eng/Y2013/V47/I9/1631


热水解处理制革污泥过程中总Cr的转移与稳定性研究

采用热水解法研究了不同热水解温度和酸性条件下,制革污泥中重金属总铬的转移特性及浸出毒性变化.结果表明:pH对制革污泥中Cr的溶出起主要作用,H2SO4调节pH为2.5和1.5时,常温水解预处理对污泥中Cr的转移率分别达到了56%和91%.热水解温度的提高不利于Cr向液相转移,当pH=2.5时,180 ℃热水解后的水解液中Cr的质量分数比常温条件下降低了70%以上.热水解处理促进污泥中Cr的稳定,且随着热水解温度的升高,Cr的浸出毒性显著降低, 180 ℃热水解Cr的稳定化率达93.2%,而常温下只有50.8%,因此,可采用常温H2SO4浸取+热水解联合处理的方法,实验结果表明:Cr的转移和稳定化效果均较好,污泥中Cr向液相的转移率高于90%,固相中Cr的浸出毒性显著降低,稳定化率超过95%.

[1] ZHOU Shun-gui, ZHOU Li-xiang, WANG Shi-mei, et al. Removal of Cr from tannery sludge by bioleaching method[J]. Journal of Environmental Sciences, 2006, 18(5): 885-890.
[2] 丁绍兰, 章川波, 俞从正. 制革污泥处理及综合利用的途径[J]. 中国皮革, 1998, 27(008): 18-20.
DING Shao-lan, ZHANG Chuan-bo, YU Cong-zheng. Tannery sludge disposal and comprehensive utilization[J]. China Leather, 1998, 27(008): 18-20.
[3] CHUAN M C, LIU J C. Release behavior of chromium from tannery sludge[J]. Water Research, 1996, 30(4): 932-938.
[4] APTE A D, VERMA S, TARE V, et al. Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment[J]. Journal of Hazardous Materials, 2005, 121(1–3): 215-222.
[5] WALSH A R, OHALLORAN J. Chromium speciation in tannery effluent—I. An assessment of techniques and the role of organic Cr(III) complexes[J]. Water Research, 1996, 30(10): 2393-2400.
[6] WALSH A R, OHALLORAN J. Chromium speciation in tannery effluent—II. Speciation in the effluent and in a receiving estuary[J]. Water Research, 1996, 30(10): 2401-2412.
[7] SHEN S B, TYAGI R D, BLAIS J F. Extraction of Cr(III) and other metals from tannery sludge by mineral acids[J]. Environmental Technology, 2001, 22(9): 1007-1014.
[8] NEYENS E, BAEYENS J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1/3): 51-67.
[9] JIANG Zi-li, MENG Da-wei, MU Hong-yan, et al. Study on the hydrothermal drying technology of sewage sludge[J]. Science China Technological Sciences, 2010, 53(1): 160-163.
[10] NAMIOKA T, MOROHASHI Y, YAMANE R, et al. Hydrothermal treatment of dewatered sewage sludge cake for solid fuel production[J]. Journal of Environment and Engineering, 2009, 4(1): 68-77.
[11] 荀锐, 王伟, 乔玮. 水热改性污泥的水分布特征与脱水性能研究[J]. 环境科学, 2009, 30(003): 851-856.
XUN Rui, WANG Wei, QIAO Wei. Water distribution and dewatering performance of the hydrothermal conditioned sludge[J]. Environmental Science, 2009, 30(003): 851-856.
[12] MA Hong-lei, CHI Yong, YAN Jian-hua, et al. Experimental study on thermal hydrolysis and dewatering characteristics of mechanically dewatered sewage sludge[J]. Drying Technology, 2011, 29(14): 1741-1747.
[13] NEYENS E, BAEYENS J, WEEMAES M, et al. Hot acid hydrolysis as a potential treatment of thickened sewage sludge[J]. Journal of Hazardous Materials, 2003, 98(1/3): 275-293.
[14] 孙雪萍, 王安亭, 李新豪, 等. 热水解法处理污泥过程中重金属的迁移规律[J]. 中国给水排水, 2010, 26(17): 66-72.
SUN Xue-ping, WANG An-ting, LI Xin-hao, et al. Migration of heavy metals in sludge treatment by thermal hydrolysis process[J]. China Water & Wastewater, 2010, 26(17): 66-72.
[15] DEWIL R, BAEYENS J, APPELS L. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content[J]. Journal of Hazardous Materials,2007, 144(3): 703-707.
[16] BLAIS J, TYAGI R, AUCLAIR J, et al. Comparison of acid and microbial leaching for metal removal from municipal sludge[J]. Water Science & Technology, 1992, 26(1/2): 197-206.
[17] BABEL S, DEL MUNDO DACERA D. Heavy metal removal from contaminated sludge for land application: A review[J]. Waste Management, 2006, 26(9): 988-1004.
[18] 王治军, 王伟. 污泥热水解过程中固体有机物的变化规律[J]. 中国给水排水, 2004, 20(7): 1-5.
WANG Zhi-iun, WANG Wei. Transformation regularity of organic solids in sludge thermal hydrolysis process[J]. China Water & Wastewater, 2004, 20(7): 1-5.
[19] SMITH R, ATMAJI P, HAKUTA Y, et al. Recovery of metals from simulated high-level liquid waste with hydrothermal crystallization[J]. The Journal of Supercritical Fluids, 1997, 11(1/2): 103-114.
[20] 刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究[J]. 环境科学研究, 2008,21(6): 9-15.
LIU Feng, WANG Qi, HUANG Qi-fe, et al. Study on the standard methods of leaching toxicity of solid waste [J]. Research of Environmental Science, 2008,21(6): 9-15.
[21] STYLIANOU M, KOLLIA D, HARALAMBOUS K, et al. Effect of acid treatment on the removal of heavy metals from sewage sludge[J]. Desalination, 2007, 215(1/3): 73-81.
[22] 王磊, 金剑, 李晓东, 等. 碱性水热法同步稳定城市垃圾/医疗废物焚烧飞灰与废水中重金属的研究[J]. 环境科学, 2010, 31(8): 1973-1980.
WANG Lei, JIN Jian, LI Xiao-dong, et al. Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical incinerator fly ash and waste water[J]. Environmental Science, 2010, 31(8): 1973-1980.

[1] XIE Hao-hui, MA Hong-lei, CHI Yong, MA Zeng-yi. Bound water measurement methods and moisture distribution within sewage sludge[J]. J4, 2012, 46(3): 503-508.
[2] WENG Huan-xin, ZHANG Jin-jun, CAO Yan-sheng, MA Xue-wen. Characteristics and sintering technology of haydite
made of sewage sludge
[J]. J4, 2011, 45(10): 1877-1883.
[3] WANG Qin, YAN Jian-hua, PAN Xin-chao, CHI Yong, GAO Fei. Vitrification of MSWI fly ash using direct current double arc plasma[J]. J4, 2011, 45(1): 141-145.
[4] JIANG Xu-Guang, LI Chun-Yu, CHE Chong, SHU Kai, FU Juan-Juan. Migration characteristics of inorganic bromine during
incineration of medical waste
[J]. J4, 2010, 44(9): 1787-1792.
[5] MA Hua-Wen, WENG Huan-Xin. Effects of temperature and granule size on sludge drying characteristics[J]. J4, 2009, 43(09): 1661-1667.