Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (8): 1738-1745    DOI: 10.3785/j.issn.1008-973X.2025.08.021
    
Prediction model for ground motion in Zhejiang Province induced by Taiwan strong earthquake
Xu XIE1(),Bo PANG1,Gangqun YU2,Luoyi GU2,Yonggang SHEN1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310030, China
2. Zhejiang Earthquake Agency, Hangzhou 310013, China
Download: HTML     PDF(1611KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The seismic characteristics caused by the earthquake were analyzed based on the M7.3 earthquake record in the Hualien Sea area of Taiwan Province on April 3, 2024 in order to predict the impact of a strong earthquake in Taiwan with a magnitude exceeding M7.0 on Zhejiang. The attenuation characteristics of seismic wave propagation were inverted, and a seismic motion prediction model for Zhejiang caused by strong earthquakes in Taiwan was established based on the improved random Green’s function method. Results showed that the seismic motion in Zhejiang caused by the strong earthquake in Taiwan had excellent far-field seismic characteristics with long periods, and the correlation between PGA and epicenter distance was not significant with slow attenuation. The empirical site amplification calculated based on the average H/V spectral ratio accorded with the actual site conditions, which could reflect the excellent period and amplification characteristics of the site in the low-frequency domain. The average geometric attenuation of seismic waves from Taiwan to Zhejiang was 1/r0.43, and the average quality factor was 255.7f 0.476 according to the inversion calculation of the stations in Hangshao area. The prediction model established based on the inversion results speculates that even if a strong earthquake close to M7.8 occurs on the east side of Taiwan Island, the possibility of a general site in Zhejiang Province triggering an earthquake intensity of VI or above is very small, and the possibility of damage to ordinary structures is not high.



Key wordsfar-field ground motion      stochastic Green’s function method      ground motion simulation      Taiwan earthquake      seismic wave decay characteristics     
Received: 31 July 2024      Published: 28 July 2025
CLC:  P 315  
Fund:  国家自然科学基金资助项目(52178174);浙江省地震局科研资助项目(2023zjj03).
Corresponding Authors: Yonggang SHEN     E-mail: xiexu@zju.edu.cn;sygdesign@zju.edu.cn
Cite this article:

Xu XIE,Bo PANG,Gangqun YU,Luoyi GU,Yonggang SHEN. Prediction model for ground motion in Zhejiang Province induced by Taiwan strong earthquake. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1738-1745.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.08.021     OR     https://www.zjujournals.com/eng/Y2025/V59/I8/1738


台湾省强地震引起的浙江地震动预测模型

为了预测震级超过M7.0的台湾省强地震对浙江的影响,根据2024年4月3日台湾省花莲海域的M7.3地震记录,分析地震引起的地震动特性. 基于改进随机格林函数法反演地震波传播的衰减特性,建立台湾强地震引起的浙江地震动预测模型. 结果表明,台湾强地震引起的浙江地震动具有长周期卓越的远场地震动特征,且PGA与震中距离的相关性不明显,衰减比较缓慢. 根据平均H/V谱比计算得到的经验场地放大与实际场地条件吻合,可以反映场地在低频域的卓越周期和场地放大特性. 根据杭绍地区台站的反演计算,得到从台湾至浙江的地震波几何衰减均值为1/r0.43,品质因子均值为255.7f 0.476. 由反演结果建立的预测模型推测可知,即使台湾岛东侧发生接近M7.8的强烈地震,浙江陆地一般场地引发Ⅵ度以上地震强度的可能性很小,普通结构物发生破损震害的可能性不大.


关键词: 远场地震动,  随机格林函数法,  地震动模拟,  台湾地震,  地震波衰减特性 
Fig.1 Source position and slip distribution
Fig.2 Station distribution and PGA
台站R/km场地
类别
PGA/
(m·s?2)
PGV/
(cm·s?1)
PGV/
PGA
AJ001 (杭)730.330.0230.0760.033
AX001(杭)729.41I00.0110.0690.063
AY00(杭)748.12I00.0090.0560.062
CHA (杭)702.51I00.0080.0570.071
HAZ (杭)730.54I00.0090.0630.070
LIA (杭)749.17I00.0070.0630.090
TOL (杭)712.00I00.0080.0600.075
XAJ (杭)669.64I00.0160.0530.033
XSH (杭)690.12I00.0080.0550.069
DJ001 (绍)657.09I00.0090.0800.089
DS001 (绍)696.200.0360.0840.023
DY001(绍)697.510.0230.0810.035
XIC(绍)632.54I00.0090.0680.076
DZ001(绍)648.77不详0.0180.1100.061
Tab.1 Epicenter distance, site type and PGA of 14 stations in Hangzhou Shaoxing region
Fig.3 Example of seismic record of clay and rock surface
Fig.4 Fourier amplitude spectrum
Fig.5 Acceleration response spectrum of horizontal NS direction seismic record
Fig.6 Absolute velocity response spectrum of horizontal direction seismic record
Fig.7 Site amplification
台站Q0ηsFIT
AX001232.8420.4210.3928.92
AY001276.1620.3880.2723.88
CHA232.3400.3830.2229.12
DJ001202.0800.5440.4624.41
HAZ289.7060.5270.3187.72
LIA290.6440.4580.3840.18
TOL215.9700.3490.4442.80
XAJ297.1330.5800.6545.93
XIC218.1480.5470.2819.67
XSH289.7000.4680.5128.85
平均值255.7050.4760.4337.88
Tab.2 Inversion result of decay characteristics
Fig.8 Seismic simulation result using stochastic Green's function method
台站R/km场地
类别
PGA/(m·s?2)
1.5M05M0
AJ001 (杭)730.330.03690.1121
AX001(杭)729.41I00.01730.0652
AY001(杭)748.12I00.02220.0654
CHA(杭)702.51I00.02400.0615
HAZ(杭)730.54I00.01520.0652
LIA (杭)749.17I00.02020.0526
TOL (杭)712.00I00.01190.0538
XAJ (杭)669.64I00.01630.0530
XSH (杭)690.12I00.01920.0771
DJ001 (绍)657.09I00.01830.0691
DS001(绍)696.200.02270.0705
DY001(绍)697.510.03820.1317
XIC (绍)632.54I00.02440.0538
DZ001(绍)648.77不详0.03430.1000
Tab.3 PGA of stations in Hangzhou Shaoxing area when seismic moment increasing by 1.5 and 5 times
[1]   SEED H B, ROMO M P, SUN J I, et al The Mexico earthquake of September 19, 1985: relationships between soil conditions and earthquake ground motions[J]. Earthquake Spectra, 2012, 4 (4): 687- 729
[2]   SEED R B, DICKENSON S E, IDRISS I M Principal geotechnical aspects of the 1989 loma prieta earthquake[J]. Soils and Foundations, 2008, 31 (1): 1- 26
[3]   HATAYAMA K, ZAMA S, NISHI H, et al Long-period strong ground motion and damage to oil storage tanks due to the 2003 Tokachi-oki earthquake[J]. Zisin Journal of the Seismological Society of Japan, 2004, 57 (2): 83- 103
[4]   梁兴文, 董振平, 王应生, 等. 汶川地震中离震中较远地区的高层建筑的震害 [J]. 地震工程与工程振动, 2009, 29(1): 24-31.
LIANG Xingwen, DONG Zhenping, WANG Yingsheng, et al. Damage to tall buildings in areas with large epicentral distance during M8. 0 Wenchuan earthquake [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(1): 24-31.
[5]   UETAKE T Long-period ground motion of the Tokyo bay area observed from the 2011 off the Pacific coast of Tohoku earthquake, foreshock and aftershocks[J]. Journal of Japan Association for Earthquake Engineering, 2012, 12 (5): 192- 206
[6]   FUJINO Y, SIRINGORINGO D, NAMIKAWA K, et al Investigation of the Yokohama-Bay cable-stayed bridge seismic response characteristics subjected to the 2011 Great East-Japan Earthquake[J]. Proceedings of the JSCE Earthquake Engineering Symposium, 2013, 69 (2): 372- 391
[7]   杨伟林, 朱升初, 洪海春, 等 汶川地震远场地震动特征及其对长周期结构影响的分析[J]. 防灾减灾工程学报, 2009, 29 (4): 473- 478
YANG Weilin, ZHU Shengchu, HONG Haichun, et al Characteristics of far-field ground motion of Wenchuan Earthquake and the effect on long-periodic structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29 (4): 473- 478
doi: 10.3969/j.issn.1672-2132.2009.04.020
[8]   谭潜, 李英民, 向渊明, 等 远场长周期地震动特征[J]. 地震工程与工程振动, 2019, 39 (5): 177- 188
TAN Qian, LI Yingmin, XIANG Yuanming, et al Study on characteristics of far-field long period ground motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 2019, 39 (5): 177- 188
[9]   高剑平, 高胜文, 李华 远场地震动频谱特性与超高层结构响应相关性研究[J]. 地震工程与工程振动, 2017, 27 (1): 135- 140
GAO Jianping, GAO Shengwen, LI Hua Correlation between spectral characteristic of far-field ground motion and seismic response of super high-rise building[J]. Journal of Earthquake Engineering and Engineering Vibration, 2017, 27 (1): 135- 140
[10]   李雪红, 周鹤鸣, 李晔暄, 等 远场长周期地震动作用下减隔震连续梁桥的动力响应特性研究[J]. 自然灾害学报, 2016, 25 (3): 137- 142
LI Xuehong, ZHOU Heming, LI Yexuan, et al Study on the dynamic response characteristics of isolated continuous girder-bridge under far-field long-period ground motions[J]. Journal of Natural Disasters, 2016, 25 (3): 137- 142
[11]   日本国土交通省气象厅. 長周期地震動階級および長周期地震動階級関連解説表について [EB/OL]. [2024-06-18]. https://www.data.jma.go.jp/eew/data/ltpgm_explain/about_level.html.
[12]   United States Geological Survey. M 7.4 - 15 km S of Hualien City, Taiwan [EB/OL]. [2024-06-18]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000m9g4/finite-fault.
[13]   浙江发布. 台湾花莲县海域发生7.3级地震! 浙江多地有震感, 部分高铁晚点 [EB/OL]. [2024-06-18]. https://www.thepaper.cn/newsDetail_forward_26910627.
[14]   NAGAO T, YAMADA M, NOZU A A study on the empirical evaluation method of site amplification effects by use of microtremor H/V spectrum[J]. Journal of Structural Engineering A, JSCE, 2010, 56A: 324- 333
[15]   徐龙军, 于海英, 曹文海, 等 汶川地震远场地震动场地相关性与分析方法评价[J]. 地震学, 2010, 32 (2): 175- 183
XU Longjun, YU Haiying, CAO Wenhai, et al Evaluation of site dependence and methods for site analysis based on far field ground motions from the Wenchuan earthquake[J]. Acta Seismologica Sinica, 2010, 32 (2): 175- 183
[16]   BOORE D M Stochastic simulation of high-frequency ground motions based on seismological models of the radiated[J]. Bulletin of the Seismological Society of America, 1983, 73 (6): 1865- 1894
[17]   BERESNEV I A, ATKINSON G M. FINSIM: a FORTRAN program for simulating stochastic acceleration time histories from finite faults [J]. Seismological Research Letters, 1998, 69(1): 27‒32.
[18]   MOTAZEDIAN D Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bulletin of the Seismological Society of America, 2005, 95 (3): 995- 1010
doi: 10.1785/0120030207
[19]   KAMAE K, IRIKURA K, FUKUCHI Y Prediction of strong ground motion based on scaling law of earthquake by stochastic synthesis method[J]. Journal of Structural and Construction Engineering, 1991, 430: 1- 9
[20]   NOZU A Necessity for a generalized expression of slip velocity correction function for use in empirical Green's function method[J]. Journal of the Seismological Society of Japan, 2002, 55: 233- 238
[21]   SATOH T Study on envelope model of ground motion based on inversion of group delay time and scattering theory[J]. Journal of Structural and Construction Engineering, 2004, 69 (586): 71- 78
doi: 10.3130/aijs.69.71_5
[22]   刘建华, 刘福田, 阎晓蔚, 等. 华北地区Lg尾波衰减研究--Lg尾波Q0地震成像 [J]. 地球物理学报, 2004, 47(6): 1044-1052.
LIU Jianhua, LIU Futian, YAN Xiaowei, et al. A study of LG code attenuation beneath north China: seismic imaging of LG code Q0 [J]. Chinese Journal of Geophysics, 2004, 47(6): 1044-1052.
[23]   胡家富, 丛连理, 苏有锦, 等 云南及周边地区Lg尾波Q值的分布特征[J]. 地球物理学报, 2003, 46 (6): 809- 813
HU Jiafu, CONG Lianli, SU Youjin, et al Distribution characteristics of Q value of the Lg coda in Yunnan and adjacent regions[J]. Chinese Journal of Geophysics, 2003, 46 (6): 809- 813
doi: 10.3321/j.issn:0001-5733.2003.06.013
[24]   吴微微, 苏金蓉, 魏娅玲, 等 四川地区介质衰减、场地响应与震级测定的讨论[J]. 地震地质, 2016, 38 (4): 1005- 1018
WU Weiwei, SU Jinrong, WEI Yaling, et al Discussion on attenuation characteristics, site response and magnitude determination in Sichuan[J]. Seismology and Geology, 2016, 38 (4): 1005- 1018
doi: 10.3969/j.issn.0253-4967.2016.04.016
[1] Xu XIE,Wen-tong HUANG,Long-fei JI,Tian-jia WANG. Influence of fault rupture process on seismic responses of seismic isolation bridges[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2225-2233.