Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1373-1384    DOI: 10.3785/j.issn.1008-973X.2025.07.005
    
Dynamic game and carbon emission effects between urban ride-sourcing and cruise taxis
Jinchi JIAO1(),Jian SUN2,*(),Xunyou NI3
1. School of Transportation Engineering, Chang’an University, Xi’an 710064, China
2. School of Future Transportation, Chang’an University, Xi’an 710064, China
3. School of Transportation Engineering, East China Jiaotong University, Nanchang 330013, China
Download: HTML     PDF(1883KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To study the dynamic competitive relationship between ride-sourcing and cruise taxis in urban environments and their impact on traffic carbon emissions, the Herfindahl-Hirschman index (HHI) was introduced to quantify the competitiveness of urban taxis. A four-player game model encompassing the government and enterprises was constructed. Considering two distinct decision-making sequences, 16 potential game scenarios were proposed. Equilibrium points were computed using the Stackelberg model, leading to the identification of 8 stable game scenarios. Based on the game outcomes, carbon emissions were calculated by integrating the COPERT model and a modified Michaelis-Menten (T-M-M) equation. Taking Xi’an as a case study, relationships between vehicle numbers (including both ride-sourcing vehicles and cruise taxis) and vehicle kilometers traveled, as well as between vehicle fleet size and carbon emissions, were established. The theoretical optimal carbon emissions under the proposed game scenarios were calculated. Results show that maintaining an optimal ratio of ride-sourcing vehicles and cruise taxis within the range of 29∶35 to 1∶1 in Xi’an can effectively balance market stability and low-carbon objectives. The government can implement traffic restriction policies (e.g., driving bans based on license plates) to maintain a slightly larger fleet of cruise taxis relative to ride-sourcing vehicles, alongside introducing incentive policies to accelerate the electrification of the cruise taxi fleet.



Key wordsurban transportation      shared mobility      taxis      competition      game theory      carbon emissions     
Received: 19 May 2024      Published: 25 July 2025
CLC:  U 491.1+2  
Fund:  国家自然科学基金资助项目(52172319,71971138,72161012).
Corresponding Authors: Jian SUN     E-mail: 2022234048@chd.edu.cn;jiansun@chd.edu.cn
Cite this article:

Jinchi JIAO,Jian SUN,Xunyou NI. Dynamic game and carbon emission effects between urban ride-sourcing and cruise taxis. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1373-1384.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.005     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1373


城市网约车与巡游出租车动态博弈及碳排放效应研究

为了研究城市网约车和巡游出租车的动态竞争关系及其对交通碳排放的影响,引入赫芬达尔-赫希曼指数(HHI)度量城市出租车的竞争程度. 构建包括政府和企业在内的四方博弈模型,考虑2种决策顺序,提出16种博弈场景,运用斯坦克尔伯格模型计算均衡点,筛选得到8种稳定博弈情景. 基于博弈结果,将COPERT模型与改进的Michaelis-Menten(T-M-M)方程整合,计算碳排放量. 以西安市为例,构建车辆数量(含网约车和巡游出租车)与行驶里程,车辆保有量与碳排放间的关系,计算得出不同博弈策略下的理论最优碳排放量. 结果显示,西安市网约车与巡游出租车最优比例控制在29∶35到1∶1能够维持市场平衡和低碳环保. 政府可通过限行、限号政策使巡游出租车数量略多于网约车,出台鼓励政策推动巡游出租车电气化进程.


关键词: 城市交通,  共享出行,  出租汽车,  竞争,  博弈理论,  碳排放 
Fig.1 Logical relationship of four-player game model
博弈场景$ {P}_{\mathrm{R}} $$ {P}_{\mathrm{T}} $
场景1. 严-监-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景2. 严-不-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景3. 宽-监-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{no} $
场景4. 宽-不-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景5. 严-监-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景6. 严-不-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景7. 宽-监-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ \dfrac{1}{2}F_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景8. 宽-不-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景9. 严-监-违-合$ {R}_{z} $+?$ {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景10. 严-不-违-合$ {R}_{z} $+$ \Delta {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景11. 宽-监-违-合$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $?$ \dfrac{1}{2}F_{z} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景12. 宽-不-违-合$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景13. 严-监-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景14. 严-不-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n}+\Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景15. 宽-监-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $?$ \dfrac{1}{2}F_{z} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $?$ \dfrac{1}{2}F_{n} $
场景16. 宽-不-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
Tab.1 Net payoffs of ride-sourcing and cruise taxis under different game scenarios
Fig.2 Daily order volume of cruise taxis and ride-sourcing
Fig.3 Distribution of hourly order rate for cruise taxis and ride-sourcing
Fig.4 Grid division of main urban area in Xi’an
FIDRTQHHI
20016136 6407 2530.845
20021 0893 7624 8510.652
20031 6696 1037 7720.663
20045164499650.502
200544821260.545
200687331200.601
2007161381540.814
20084041.000
Tab.2 Herfindahl-Hirschman indexes statistics within main urban area of Xi’an (excerpt)
竞争状态编号状态描述HHI变化范围网约车数量变化范围巡游出租车数量变化范围
1.0完全竞争0.500≤HHI≤0.501[16 715, 15 285][16 715, 15 285]
2.1网约车轻微优势0.501<HHIrs≤0.520(16 715, 19 200][12 800, 15 285)
2.2网约车优势竞争0.520<HHIrs≤0.625(19 200, 24 000][8 000, 12 800)
2.3网约车基本垄断HHIrs>0.625(24 000, 32 000][0, 8 000)
3.1巡游出租车轻微优势0.501<HHIct≤0.520[12 800, 15 285)(16 715, 19 200]
3.2巡游出租车优势竞争0.520<HHIct≤0.625[8 000, 12 800)(19 200, 24 000]
3.3巡游出租车基本垄断HHIct>0.625[0, 8 000)(24 000, 32 000]
Tab.3 Regulations on degree of competition between ride-sourcing and cruise taxis
Fig.5 Distribution of competition degree between ride-sourcing and cruise taxis in main urban area of Xi’an
参数赋值参数赋值
政府宽松监管成本$ {C}_{{\mathrm{xl}}} $/
万元
10政府严格监管成本$ {C}_{{\mathrm{xs}}} $/万元15
网约车罚金$ {F}_{z} $/万元7网约车运营成本$ {C}_{{\mathrm{zo}}} $/万元6
巡游出租车罚金$ {F}_{n} $/万元7巡游出租车运营成本$ {C}_{{\mathrm{no}}} $/
万元
6
乘客监督奖励$ {B}_{y} $/万元4乘客监督成本$ {C}_{y} $/万元2
网约车合规收益$ {R}_{z} $/万元9巡游出租车合规收益$ {R}_{n} $/
万元
9
网约车违规额外收益$ \Delta {R}_{z} $/万元3巡游出租车违规额外收益$ \Delta {R}_{n} $/万元3
政府严格监管概率$ x $/%20网约车合规经营概率$ z $/%80
乘客参与监督概率$ y $/%20巡游出租车合规经营概率$ n $/%80
Tab.4 Parameters and assignments of game model
博弈场景$ {u}_{1} $$ {v}_{1} $$ {u}_{2} $$ {v}_{2} $$ {q}_{1} $$ {q}_{2} $
场景196961.50.75
场景296961.50.75
场景396961.50.75
场景496961.50.75
场景5121396?2.52.75
场景6121396?2.52.75
场景7129.59611
场景8126964.5?0.75
场景99612133.5?2.25
场景109612133.5?2.25
场景1196129.51.750.375
场景129612603
场景1312131213?0.5?0.25
场景1412131213?0.5?0.25
场景15129.5129.51.250.625
场景1612612631.5
Tab.5 Nash equilibrium results of parameter assignment in different game scenarios (priority implementation strategy for ride-sourcing)
博弈场景$ K $
策略1策略2
场景11/22
场景21/22
场景31/22
场景41/22
场景7114/3
场景113/141
场景151/22
场景161/22
Tab.6 Nash equilibrium results of game scenarios
删除场景q1q2说明
场景53.5?2.25q2为负值,表示市场无法有效运作
场景63.5?2.25q2为负值,表示市场无法有效运作
场景803q1=0,表示巡游出租车垄断市场
场景9?2.52.75q1为负值,表示市场无法有效运作
场景10?2.52.75q1为负值,表示市场无法有效运作
场景124.5?0.75q2为负值,表示市场无法有效运作
场景13?0.5?0.25q1q2均为负值,表示市场完全失控
场景14?0.5?0.25q1q2均为负值,表示市场完全失控
Tab.7 Removal notes for unstable game scenarios
Fig.6 Relationship between total carbon emissions and number of ride-sourcing vehicles
Fig.7 Comparison of total carbon emissions under particular cases
Fig.8 Variation of carbon emissions with ride-sourcing vehicles under particular cases
Fig.9 Impact of key model parameters on carbon emissions
Fig.10 Expectations and variances of key model parameters
[1]   张旭昆, 赵静 互联网对市场的改善和扰乱: 基于市场失灵理论的视角[J]. 浙江大学学报: 人文社会科学版, 2019, 49 (2): 86- 99
ZHANG Xukun, ZHAO Jing Internet improvement and disruption to the market: from the perspective of market failure theory[J]. Journal of Zhejiang University: Humanities and Social Sciences, 2019, 49 (2): 86- 99
[2]   杨学成, 涂科 出行共享中的用户价值共创机理: 基于优步的案例研究[J]. 管理世界, 2017, (8): 154- 169
YANG Xuecheng, TU Ke The co-creation mechanism of user value in travel sharing: a case study based on Uber[J]. Journal of Management World, 2017, (8): 154- 169
doi: 10.3969/j.issn.1002-5502.2017.08.013
[3]   易开刚, 张琦 平台经济视域下的商家舞弊治理: 博弈模型与政策建议[J]. 浙江大学学报: 人文社会科学版, 2019, 49 (5): 127- 142
YI Kaigang, ZHANG Qi Analysis of sellers’ commercial fraud in platform economy based on evolutionary game theory[J]. Journal of Zhejiang University: Humanities and Social Sciences, 2019, 49 (5): 127- 142
[4]   孙启鹏, 王栋, 许晓晴, 等 基于动态博弈的城市出租车投放量测算研究[J]. 交通运输系统工程与信息, 2019, 19 (5): 193- 197
SUN Qipeng, WANG Dong, XU Xiaoqing, et al Urban taxi quantity based on dynamic game theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (5): 193- 197
[5]   罗清和, 潘道远 “专车” 进入后的出租车市场规制策略研究[J]. 长安大学学报: 社会科学版, 2015, 17 (4): 34- 41
LUO Qinghe, PAN Daoyuan Research on the regulation strategy of the taxi market after the “special car” entering[J]. Journal of Chang’an University: Social Science Edition, 2015, 17 (4): 34- 41
[6]   VAN VUGT M, MEERTENS R M, VAN LANGE P A M Car versus public transportation? The role of social value orientations in a real-life social dilemma[J]. Journal of Applied Social Psychology, 1995, 25 (3): 258- 278
doi: 10.1111/j.1559-1816.1995.tb01594.x
[7]   PEDERSEN P A Moral hazard in traffic games[J]. Journal of Transport Economics and Policy, 2003, 37 (1): 47- 68
[8]   YANG H, ZHANG X, MENG Q Stackelberg games and multiple equilibrium behaviors on networks[J]. Transportation Research Part B: Methodological, 2007, 41 (8): 841- 861
doi: 10.1016/j.trb.2007.03.002
[9]   杨露萍, 钱大琳 小汽车通勤向公共交通转移演化博弈分析[J]. 北京交通大学学报, 2014, 38 (2): 151- 156
YANG Luping, QIAN Dalin Evolutionary game analysis on modal shift of car commuters to public transport[J]. Journal of Beijing Jiaotong University, 2014, 38 (2): 151- 156
doi: 10.11860/j.issn.1673-0291.2014.04.27
[10]   SUN Q, HE Y, WANG Y, et al Evolutionary game between government and ride-hailing platform: evidence from China[J]. Discrete Dynamics in Nature and Society, 2019, 2019 (1): 9545102
[11]   杨浩雄, 魏彬 网络约车与出租车的竞争博弈研究: 以平台补贴为背景[J]. 北京社会科学, 2016, (5): 68- 76
YANG Haoxiong, WEI Bin On the competition game between online tailored taxi and traditional taxi under platform’s subsidy policy[J]. Social Sciences of Beijing, 2016, (5): 68- 76
[12]   SUN S, WANG W Analysis on the market evolution of new energy vehicle based on population competition model[J]. Transportation Research Part D: Transport and Environment, 2018, 65: 36- 50
doi: 10.1016/j.trd.2018.08.005
[13]   蒋慧峰, 陈森发 基于时不变综合系数的运输方式动力学模型[J]. 系统工程学报, 2010, 25 (1): 85- 90
JIANG Huifeng, CHEN Senfa Dynamic model of transportation modes based on time-invariant comprehensive coefficient[J]. Journal of Systems Engineering, 2010, 25 (1): 85- 90
[14]   SUN D J, JIAO J C, NI X Y, et al Modeling dynamic competition among urban taxis and the impact on carbon emissions[J]. Sustainable Cities and Society, 2025, 122: 106258
doi: 10.1016/j.scs.2025.106258
[15]   孙会君, 杨爽, 吕莹, 等 数据驱动下共享出行资源配置的双层博弈问题研究[J]. 管理世界, 2023, 39 (4): 160- 175
SUN Huijun, YANG Shuang, LV Ying, et al Research on data-driven bi-level game problems in resource allocation of sharing mobility systems[J]. Journal of Management World, 2023, 39 (4): 160- 175
[16]   陈启香, 吕斌, 陈喜群, 等 空间异质性建成环境对出租车与地铁竞合关系的影响[J]. 交通运输系统工程与信息, 2022, 22 (3): 25- 35
CHEN Qixiang, LV Bin, CHEN Xiqun, et al Impacts of built environment on competition and cooperation relationship between taxi and subway considering spatial heterogeneity[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (3): 25- 35
[17]   奉鸣, 信红喜, 骆冠良, 等 未来我国出租车发展趋势及市场化改革研究[J]. 综合运输, 2023, 45 (4): 28- 32
FENG Ming, XIN Hongxi, LUO Guanliang, et al Development trend and market reform of China’s taxi in the future[J]. China Transportation Review, 2023, 45 (4): 28- 32
[18]   GRAHN R, HARPER C D, HENDRICKSON C, et al Socioeconomic and usage characteristics of transportation network company (TNC) riders[J]. Transportation, 2020, 47 (6): 3047- 3067
doi: 10.1007/s11116-019-09989-3
[19]   杨燕, 胥川 出租车和网约车载客空间特征分析[J]. 交通运输工程与信息学报, 2020, 18 (1): 68- 76
YANG Yan, XU Chuan Analysis the spatial characteristic of taxi and ridesourcing service trips[J]. Journal of Transportation Engineering and Information, 2020, 18 (1): 68- 76
doi: 10.3969/j.issn.1672-4747.2020.01.009
[20]   韩印, 李媛媛, 李文翔, 等 基于轨迹数据的网约车排放时空特征分析[J]. 交通运输系统工程与信息, 2022, 22 (1): 234- 242
HAN Yin, LI Yuanyuan, LI Wenxiang, et al Analyzing spatiotemporal characteristics of ridesourcing emissions based on trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (1): 234- 242
[21]   ROBINSON R M, KHATTAK A Route change decision making by hurricane evacuees facing congestion[J]. Transportation Research Record, 2010, 2196 (1): 168- 175
doi: 10.3141/2196-18
[22]   HENRY E, FURNO A, EL FAOUZI N E Approach to quantify the impact of disruptions on traffic conditions using dynamic weighted resilience metrics of transport networks[J]. Transportation Research Record, 2021, 2675 (4): 61- 78
doi: 10.1177/0361198121998663
[23]   SHORSHANI F M, ANDRÉ M, BONHOMME C, et al Modelling chain for the effect of road traffic on air and water quality: techniques, current status and future prospects[J]. Environmental Modelling and Software, 2015, 64: 102- 123
doi: 10.1016/j.envsoft.2014.11.020
[24]   LI Y, ZHENG J, DONG S, et al Temporal variations of local traffic CO2 emissions and its relationship with CO2 flux in Beijing, China[J]. Transportation Research Part D: Transport and Environment, 2019, 67: 1- 15
doi: 10.1016/j.trd.2018.10.007
[25]   赵光辉, 李玲玲 大数据时代新型交通服务商业模式的监管——以网约车为例[J]. 管理世界, 2019, (6): 109- 118
ZHAO Guanghui, LI Lingling The supervision of the new transport service business model in big data era: a case study of ride-hailing service[J]. Journal of Management World, 2019, (6): 109- 118
doi: 10.3969/j.issn.1002-5502.2019.06.010
[26]   LAI X, LIU Q, WANG W, et al Dynamic game with perfect and complete information based dynamic channel assignment[J]. Applied Intelligence, 2013, 39 (4): 692- 704
doi: 10.1007/s10489-012-0402-8
[27]   周忠宝, 任甜甜, 肖和录, 等 资产收益序列相依下的多阶段投资博弈模型[J]. 管理科学学报, 2019, 22 (7): 66- 88
ZHOU Zhongbao, REN Tiantian, XIAO Helu, et al Multi-period portfolio game model with serially correlated returns[J]. Journal of Management Sciences in China, 2019, 22 (7): 66- 88
doi: 10.3969/j.issn.1007-9807.2019.07.005
[28]   罗掌华, 李亚坤, 冯力 “完全竞争”的一种理论思考[J]. 兰州学刊, 1996, (5): 34- 36
LUO Zhanghua, LI Yakun, FENG Li A theoretical reflection on “perfect competition”[J]. Lanzhou Academic Journal, 1996, (5): 34- 36
[29]   赵涛 竞争优势与优势竞争: 后发地区的发展定位与竞争战略[J]. 经济问题探索, 2003, (4): 29- 35
ZHAO Tao To fixed competition advantage and advantage competition of development position and choice the competitive strategy in developing region[J]. Inquiry into Economic Issues, 2003, (4): 29- 35
doi: 10.3969/j.issn.1006-2912.2003.04.008
[30]   王京滨, 李博 银行业务地理集中是否降低了金融风险? 基于中国城市商业银行微观数据的研究[J]. 管理世界, 2021, (5): 87- 97
WANG Jingbin, LI Bo Does the geographical concentration of banking business reduce financial risks? A study based on micro-level dataset of Chinese city commercial banks[J]. Journal of Management World, 2021, (5): 87- 97
doi: 10.3969/j.issn.1002-5502.2021.05.008
[31]   孙健, 宋茂星, 邱果, 等 基于电动汽车大数据的多等级充电站选址及服务能力研究[J]. 中国公路学报, 2024, 37 (4): 48- 60
SUN Jian, SONG Maoxing, QIU Guo, et al Location and service capability of multilevel charging stations based on electric vehicle big data[J]. China Journal of Highway and Transport, 2024, 37 (4): 48- 60
[32]   LEI L C, GAO S, ZENG E Y Regulation strategies of ride-hailing market in China: an evolutionary game theoretic perspective[J]. Electronic Commerce Research, 2020, 20 (3): 535- 563
doi: 10.1007/s10660-020-09412-5
[33]   张群, 张卫国, 马勇 中国金融市场系统复杂性的演化机理与管理研究[J]. 管理科学学报, 2017, 20 (1): 75- 86
ZHANG Qun, ZHANG Weiguo, MA Yong Evolution mechanisms and management of systemic complexity in China’s financial markets[J]. Journal of Management Sciences in China, 2017, 20 (1): 75- 86
doi: 10.3969/j.issn.1007-9807.2017.01.008
[34]   ARAÚJO J P C, OLIVEIRA J R M, SILVA H M R D The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements[J]. Transportation Research Part D: Transport and Environment, 2014, 32: 97- 110
doi: 10.1016/j.trd.2014.07.006
[35]   BERKOWICZ R, WINTHER M, KETZEL M Traffic pollution modelling and emission data[J]. Environmental Modelling and Software, 2006, 21 (4): 454- 460
doi: 10.1016/j.envsoft.2004.06.013
[36]   ZHANG S, WU Y, LIU H, et al Real-world fuel consumption and CO2 emissions of urban public buses in Beijing[J]. Applied Energy, 2014, 113: 1645- 1655
doi: 10.1016/j.apenergy.2013.09.017
[37]   邬彩霞 中国低碳经济发展的协同效应研究[J]. 管理世界, 2021, (8): 105- 116
WU Caixia Research on the synergistic effect of low-carbon economy in China[J]. Journal of Management World, 2021, (8): 105- 116
doi: 10.3969/j.issn.1002-5502.2021.08.009
[1] Yulong DONG,Lu CHEN,Zhongkai BAO. Resource allocation of aircraft final assembly logistics distribution system based on game theory[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 120-129.
[2] Junhui ZHANG,Xiaoman GUO,Jingxian WANG,Zongjie FU,Yuxi LIU. Shared lane-keeping control based on non-cooperative game theory[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1001-1008.
[3] Yue ZHANG,Zhao GAO,Na LI. Referral coordination mechanism of gatekeeper healthcare system[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2445-2456.
[4] WANG Yue,YANG Kun,YANG Hua,CHEN Guo-zhu. SPWM pulse generator and novel method for pulse competition elimination[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 2-.
[5] WANG Yue,YANG Kun,YANG Hua,CHEN Guo-zhu. Implementation of universal SPWM pulse generator and novel method for pulse competition elimination[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 2087-2093.
[6] PAN Ju-long, LI Shan-ping, ZHANG Dao-yuan. Detecting suspicious node within one cluster in wireless sensor network
using game theoretic approach
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 72-78.
[7] TAN Hai-Yun, HONG Yuan-Rui, XIE Dun, et al. Game analysis of electricity markets considering bidding of ramp-rate[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(6): 1152-1157.