Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1322-1332    DOI: 10.3785/j.issn.1008-973X.2025.06.023
    
LLC resonant three port DC-DC converter and its decoupling control
Ziyu WANG(),Jianjiang SHI*()
College of Electrical Engineering , Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(7603KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A LLC resonant three port DC-DC converter with integrated photovoltaic and storage design and its advanced control strategy were proposed, for the application requirements of solar powered UAV’s energy manager. Firstly, time-domain analysis was used to analyze the multiple operating modes of the resonant tank of the three-port converter under different power transmission modes. Phase shift control was used to achieve the flexible power control among the three ports. Secondly, polynomial approximation was used to fit the gain surface obtained from time-domain analysis to obtain an accurate mathematical expression for the gain characteristics of the converter. On this basis, a decoupling control strategy was proposed. The design of the decoupling loop could effectively reduce the power coupling degree between multiple control loops of the three-port converter and optimize its dynamic performance. Finally, a 500 W experimental prototype was built, to verify the steady-state operating characteristics, dynamic mode switching process, and decoupling loop design of the three-port topology. The experimental results verified that the time-domain analysis method could accurately describe the circuit characteristics, and the decoupling loop could effectively reduce the degree of power coupling between control loops and improve the dynamic response performance of the system.



Key wordsthree port DC-DC converter      LLC resonant tank      phase shift control      decoupling control method      polynomial fitting     
Received: 29 October 2024      Published: 30 May 2025
CLC:  TM 46  
Fund:  国家自然科学基金资助项目(52077199).
Corresponding Authors: Jianjiang SHI     E-mail: 22210149@zju.edu.cn;jianjiang@zju.edu.cn
Cite this article:

Ziyu WANG,Jianjiang SHI. LLC resonant three port DC-DC converter and its decoupling control. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1322-1332.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.023     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1322


LLC谐振型三端口DC-DC变换器及其解耦控制

针对太阳能无人机高效发电系统的应用需求,提出集成光/储一体化设计的LLC谐振型三端口DC-DC变换器拓扑及其先进控制策略. 采用时域分析的方法,对该三端口变换器在不同功率传输模式下谐振腔具有的多种工作模式进行分析,并采用移相控制实现对3个端口之间功率的灵活控制. 为了得到准确的变换器增益特性的数学表达式,采用多项式近似的方法,拟合时域分析得到的增益曲面,并在此基础上提出解耦控制策略. 解耦环路的设计能够有效降低三端口变换器多控制环路之间的功率耦合程度,优化动态性能. 搭建500 W的试验样机,对该三端口电路拓扑的稳态运行特征、模式动态切换过程以及解耦环路的设计进行验证. 实验结果表明,该时域分析方法能够准确描述电路特征,同时解耦环路能够有效降低控制环路之间的功率耦合程度,提升系统的动态响应性能.


关键词: 三端口DC-DC变换器,  LLC谐振腔,  移相控制,  解耦控制,  多项式拟合 
Fig.1 Topology structure of three port converter
Fig.2 Key operation waveforms under different power transmission modes
Fig.3 Operate state of resonant tank
Fig.4 Equivalent circuit diagrams under three port operation modes
Fig.5 Gain surface of different operating modes
Fig.6 Circuit control block diagram
ⅡA模态ⅡB模态ⅢA模态ⅢB模态
a11=?3.433a12=?6.119a21=?3.106a22=?2.968
b11=0.3244b12=?4.448b21=?0.2447b22=0.4512
c11=0.2987c12=2.72c21=?0.003821c22=?0.4108
d11=?0.4699d12=2.857d21=?1.423d22=?0.1565
e11=0.8428e12=?0.2604e21=1.156e22=1.096
f11=0.7062f12=0.1681f21=0.7762
g12=0.7468
Tab.1 Coefficient of fitting surface polynomial
ⅡA模态ⅡB模态ⅢA模态ⅢB模态
A11=a11A12=a12A21=a21A22=a22
B11=0.5b11/a11B12=b12B21=0.5b21/a21B22=0.5b22/a22
C11=0.5c11/a11C12=c12C21=0.5c21/a21C22=0.5c22/a22
D11=d11?0.25b112/a11D12=d12D21=d21?0.25b212/a21D22=?0.25b222/a22
E11=e11?0.5b11c11/a11E12=e12E21=e21?0.5b21c21/a21E22=d22?0.5b22c22/a22
F11=f11?0.25c112/a11F12=f12F21=f21?0.25c212/a21F22=e22?0.25c222/a22
G12=g12
Tab.2 Coefficient of decoupling polynomial
$R_{\mathrm{o}}/ \Omega $MPf/%
800.856999.98
1000.864099.18
1500.875697.86
2000.882797.08
4000.895595.69
Tab.3 Compare of gain characteristic under different loads
Fig.7 Gain fitting surface of operating mode II
模态Ⅱ模态Ⅲ
a1=2.101a2=7.128
b1=?2.585b2=?6.238
c1=0.7826c2=1.223
d1=?0.00304d2=0.1113
Tab.4 Coefficient of running boundary polynomial
Fig.8 System control block diagram incorporating decoupling control
Fig.9 Experiment of decoupling loop
Fig.10 Three-port converter prototype
参数数值参数数值
光伏电压VPV/V80~120谐振电容Cr/nF470
蓄电池电压Vb/V50~75励磁电感Lm/μH40
输出电压Vo/V200变压器变比n1n21∶3
输出功率Po/W0~500谐振频率fr/kHz100
谐振电感Lr/μH5.39开关频率fs/kHz100
Tab.5 Key design parameters of prototype
Fig.11 Operation waveform under different working modes
Fig.12 Waveform switching diagram of power transmission mode
Fig.13 Dynamic response waveforms under 500 W
Fig.14 Dynamic response waveforms under 400 W
Fig.15 Dynamic response waveforms under 200 W
[1]   高明. 太阳能无人机能量管理器若干关键技术研究[D]. 杭州: 浙江大学, 2024.
GAO Ming. Research on several key technologies of solar powered UAV’s energy manager [D]. Hangzhou: Zhejiang University, 2024.
[2]   高圣伟, 祝庆同 一种独立光储发电系统用宽输入范围非隔离三端口变换器[J]. 电工技术学报, 2023, 38 (4): 970- 982
GAO Shengwei, ZHU Qingtong A wide input range non-isolated three-port converter for stand-alone PV storage power generation system[J]. Transactions of China Electrotechnical Society, 2023, 38 (4): 970- 982
[3]   CHIEN L J, CHEN C C, CHEN J F, et al Novel three-port converter with high-voltage gain[J]. IEEE Transactions on Power Electronics, 2014, 29 (9): 4693- 4703
doi: 10.1109/TPEL.2013.2285477
[4]   HU Y, XIAO W, CAO W, et al Three-port DC-DC converter for stand-alone photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2015, 30 (6): 3068- 3076
doi: 10.1109/TPEL.2014.2331343
[5]   KIM S Y, SONG H S, NAM K Idling port isolation control of three-port bidirectional converter for EVs[J]. IEEE Transactions on Power Electronics, 2011, 27 (5): 2495- 2506
[6]   TOMAS-MANEZ K, ZHANG Z, OUYANG Z. Multi-port isolated LLC resonant converter for distributed energy generation with energy storage [C]// IEEE Energy Conversion Congress and Exposition. Cincinnati: IEEE, 2017: 2219–2226.
[7]   WANG Z, LI H An integrated three-port bidirectional DC-DC converter for PV application on a DC distribution system[J]. IEEE Transactions on Power Electronics, 2013, 28 (10): 4612- 4624
doi: 10.1109/TPEL.2012.2236580
[8]   QIAN Z, ABDEL-RAHMAN O, AL-ATRASH H, et al Modeling and control of three-port DC/DC converter interface for satellite applications[J]. IEEE Transactions on Power Electronics, 2009, 25 (3): 637- 649
[9]   WU H, XU P, HU H, et al Multiport converters based on integration of full-bridge and bidirectional DC-DC topologies for renewable generation systems[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (2): 856- 869
doi: 10.1109/TIE.2013.2254096
[10]   孙孝峰, 刘飞龙, 熊亮亮, 等 双Buck/Boost集成双有源桥三端口DC-DC变换器[J]. 电工技术学报, 2016, 31 (22): 73- 82
SUN Xiaofeng, LIU Feilong, XIONG Liangliang, et al Dual buck/boost integrated dual active bridge three-port DC-DC converter[J]. Transactions of China Electrotechnical Society, 2016, 31 (22): 73- 82
[11]   王杉杉, 高明, 石健将 一种应用于航天器分布式供电系统的ZVS三端口DC-DC变换器[J]. 太阳能学报, 2023, 44 (4): 384- 392
WANG Shanshan, GAO Ming, SHI Jianjiang A ZVS three-port dc-dc converter of distributed power supply system applied in spacecraft[J]. Acta Energiae Solaris Sinica, 2023, 44 (4): 384- 392
[12]   孙孝峰, 申彦峰, 李午英, 等 交错并联双向Buck/Boost集成LLC谐振型三端口直流变换器[J]. 电工技术学报, 2016, 31 (14): 165- 175
SUN Xiaofeng, SHEN Yanfeng, LI Wuying, et al Interleaved bidirectional buck/boost and LLC integrated three-port DC-DC converter[J]. Transactions of China Electrotechnical Society, 2016, 31 (14): 165- 175
[13]   王荣闯, 王杉杉, 高明, 等 光伏-蓄电池联合供电系统中三端口变换器的解耦控制研究[J]. 太阳能学报, 2022, 43 (3): 203- 209
WANG Rongchuang, WANG Shanshan, GAO Ming, et al Research on decoupling control of three-port converter in photovoltaic-battery generation system[J]. Acta Energiae Solaris Sinica, 2022, 43 (3): 203- 209
[1] Shan-shan WANG,Ming GAO,Jian-jiang SHI. Current stress optimization of dual Buck-Boost integrated DAB three-port DC-DC converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1425-1435, 1472.
[2] Yi-jia ZHAO,Yun-jian WANG,Yao-dong WANG,Wei ZHANG. Power prediction control of ISOP based on single phase shift control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 160-168.