|
|
Semantic communication system in deterministic networking for5G-advanced vehicular network |
Hongzhi LUAN1( ),Shucai LI1,Yi LI2,Chuanjie QIAN2,*( ),Qiong MEI2 |
1. Comprehensive Smart Energy Department., Shandong Electric Power Engineering Consulting Institute Limited Company, Jinan 250011, China 2. Strategic Project Department, Jiangsu Future Network Group, Nanjing 211111, China |
|
|
Abstract A deadline-aware semantic communication (DDA-SC) system specifically tailored for deterministic network in 5G-Advanced intelligent vehicle-to-everything (V2X) environments was proposed in order to overcome the challenge of prolonged encoding time in current semantic communication (SC) systems, which impedes their direct deployment in deterministic networking (DN) for 5G-Advanced vehicle-to-everything (V2X) networks—particularly critical for intelligent transportation systems requiring high-throughput and low-latency data processing. A deadline-aware semantic encoder (DDA-SE) was employed, which adjusted the depth of semantic encoding to meet data deadlines, ensuring timely encoding and transmission. A signal-to-noise ratio (SNR) aware network based on encoding depth was introduced in order to enhance transmission reliability across different encoding deadlines. SNR was mapped to relevant signal-to-noise ratio (R-SNR) based on encoding depth during training, using an attention mechanism to sense R-SNR and better resist channel noise under various encoding deadlines. The experimental results show that this system achieve an accuracy improvement of over 80.31% in the CARS-196 vehicle identification task compared with systems that do not consider data deadlines when encoding deadlines are shorter than 5 microseconds. Results demonstrate that DDA-SC can accomplish tasks under extremely low encoding deadlines that are unachievable by conventional semantic communication systems, thus verifying the effectiveness of the method.
|
Received: 12 July 2024
Published: 25 April 2025
|
|
Fund: 北京市自然科学基金资助项目 (L222043). |
Corresponding Authors:
Chuanjie QIAN
E-mail: Luanhongzhi@sdepci.com;qianchuanjie@fngroup.cn
|
5G-A车联网确定性网络中的语义通信系统
针对现有语义通信(SC)系统编码时间较长,无法直接应用于5G-Advanced技术框架下,需要处理大量高实时性、低延迟数据的智能车联网系统(V2X)中确定性网络(DN)的问题,提出针对5G-Advanced智能车联网中确定性网络设计的截止时间敏感的语义通信系统(DDA-SC). 该系统采用截止时间敏感的语义编码器,通过控制编码深度适应数据截止时间,确保在有效时间内完成编码与传输. 为了提高各编码截止时间下的传输可靠性,提出基于编码深度的信噪比感知网络. 该网络在训练时将SNR映射为编码深度相关的相关信噪比(R-SNR),利用注意力机制进行R-SNR感知,以在不同编码截止时间下更好地抵御信道噪声. 实验结果表明,当编码截止时间< 5 μs时,该系统在CARS-196汽车识别任务上的准确度较不考虑截止时间的系统提高80.31%以上. 结果表明,DDA-SC可以在极低编码截止时间下完成一般语义通信系统无法完成的任务,验证了该方法的有效性.
关键词:
车联网(V2X),
语义通信,
5G-Advanced,
确定性网络,
联合信源信道编码
|
|
[2] |
ZHAI Shuo, QIAN Benhua, WANG Rui, et al. Overview of the development and application of vehicle networking technology [C]// Proceedings of the 24th China Conference on System Simulation Technology and Applications . Hefei: Hefei University of Technology Press, 2023.
|
|
|
[3] |
曹志义 汽车智能制造中的工业物联网技术应用[J]. 汽车与新动力, 2023, 6 (5): 1- 4 CAO Zhiyi Application of industrial internet of things technology in intelligent manufacturing of automobiles[J]. Automobiles and New Power, 2023, 6 (5): 1- 4
|
|
|
[4] |
张应辉, 李国腾, 韩刚, 等 5G车联网中安全高效的组播服务认证与密钥协商方案[J]. 电子与信息学报, 2024, 46 (7): 3026- 3035 ZHANG Yinghui, LI Guoteng, HAN Gang, et al A secure and efficient multicast service authentication and key agreement scheme in 5G vehicular networks[J]. Journal of Electronics and Information Technology, 2024, 46 (7): 3026- 3035
doi: 10.11999/JEIT231118
|
|
|
[5] |
黄晓舸, 吴雨航, 尹宏博, 等 车联网中基于有向无环图区块链的个性化联邦互蒸馏学习方法[J]. 电子与信息学报, 2024, 46 (7): 2821- 2830 HUANG Xiaoge, WU Yuhang, YIN Hongbo, et al A personalized federated mutual distillation learning method based on directed acyclic graph blockchain in vehicular networks[J]. Journal of Electronics and Information Technology, 2024, 46 (7): 2821- 2830
doi: 10.11999/JEIT230976
|
|
|
[6] |
王毅成 第六代WiFi技术探析及其与5G关系的探究[J]. 信息通信, 2020, 29 (5): 1- 3 WANG Yicheng Analysis of sixth generation WiFi technology and its relationship with 5G[J]. Information and Communications, 2020, 29 (5): 1- 3
|
|
|
[7] |
肖扬 5G-Advanced扩展现实增强技术研究[J]. 电信科学, 2024, 40 (4): 160- 169 XIAO Yang Research on 5G-advanced extended reality enhancement technology[J]. Telecommunications Science, 2024, 40 (4): 160- 169
|
|
|
[8] |
YANG Y, GUO C, LIU F, et al Semantic communications with artificial intelligence tasks: reducing bandwidth requirements and improving artificial intelligence task performance[J]. IEEE Industrial Electronics Magazine, 2023, 17 (3): 4- 13
doi: 10.1109/MIE.2022.3174331
|
|
|
[9] |
徐英姿, 刘原, 时梦然, 等 语义在通信中的应用综述[J]. 电信科学, 2022, 38 (Suppl.1): 43- 59
|
|
|
[1] |
濮赞成 第五代移动通信技术应用开发研究[J]. 现代工业经济和信息化, 2018, 8 (14): 117- 118 PU Zancheng Research on application development of fifth generation mobile communication technology[J]. Modern Industrial Economy and Informatization, 2018, 8 (14): 117- 118
|
|
|
[9] |
XU Yingzi, LIU Yuan, SHI Mengran, et al Overview of the application of semantics in communication[J]. Telecommunications Science, 2022, 38 (Suppl.1): 43- 59
|
|
|
[10] |
LIU C, GUO C, YANG Y, et al Adaptable semantic compression and resource allocation for task-oriented communications[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 10 (3): 769- 782
|
|
|
[2] |
翟硕, 钱本华, 王睿, 等. 车联网技术的发展与应用综述[C]//第24届中国系统仿真技术及其应用学术年会论文集. 合肥: 合肥工业大学出版社, 2023.
|
|
|
[11] |
乔萱, 李宗辉, 刘强, 等 无线时间敏感网络技术综述[J]. 软件学报, 2025, 36 (1): 184- 202 QIAO Xuan, LI Zonghui, LIU Qiang, et al Overview of wireless time-sensitive networking technology[J]. Journal of Software, 2025, 36 (1): 184- 202
|
|
|
[12] |
潘强. 面向图像分割的车载语义通信技术研究[D]. 北京: 北京邮电大学, 2023. PAN Qiang. Research on semantic communication technology for image segmentation in vehicular networks [D]. Beijing: Beijing University of Posts and Telecommunications, 2023.
|
|
|
[13] |
陈九九. 语义驱动的车联网资源分配算法研究[D]. 北京: 北京邮电大学, 2024. CHEN Jiujiu. Research on semantic-driven resource allocation algorithms in vehicle networking [D]. Beijing: Beijing University of Posts and Telecommunications, 2024.
|
|
|
[14] |
FENG Y, SHEN H, SHAN Z, et al. Semantic communication for edge intelligence enabled autonomous driving system [J]. IEEE Network, 2024, 39(2): 149-157.
|
|
|
[15] |
SUN L, YANG Y, CHEN M, et al Adaptive information bottleneck guided joint source and channel coding for image transmission[J]. IEEE Journal on Selected Areas in Communications, 2023, 41 (8): 2628- 2644
doi: 10.1109/JSAC.2023.3288238
|
|
|
[16] |
RUMELHART D E, HINTON G E, WILLIAMS R J Learning representations by back-propagating errors[J]. Nature, 1986, 323 (1986): 533- 536
|
|
|
[17] |
DENG L The MNIST database of handwritten digit images for machine learning research [Best of the Web][J]. IEEE Signal Processing Magazine, 2012, 29 (6): 141- 142
doi: 10.1109/MSP.2012.2211477
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|