|
|
Job accessibility of urban rail transit considering access and egress travel |
Yue CHEN1,4( ),Qi XU2,Shunping JIA2,*( ),Runbin WEI3,Shiyi SUN1,Wenxi LI1 |
1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China 2. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China 3. Beijing Metro Network Management Limited Company, Beijing 100101, China 4. Institute for Transport Studies,University of Leeds, Leeds LS29JT, England |
|
|
Abstract The walking catchment areas and cycling catchment areas identified from the bike-sharing order data were used in the context of the integrated development of rail transit and city in order to determine the walking and cycling time from metro stations to residential neighborhoods and job-related point of interest (POI). Then a two-step floating catchment area method considering access and egress travel was proposed. The job accessibility and equity of metro stations within the Sixth Ring Road of Beijing were measured combined with the Lorenz curve and Gini coefficient. The impacts of access and egress travel on them were quantified. The average access and egress travel time of each station was 18.6 min and 8.6 min for walking and cycling, accounting for 29% and 16% of the total travel time, and the time spent in the first mile was slightly higher than that in the last mile. The job accessibility of urban rail transit gradually decreased from the central city to the periphery and showed obvious corridor characteristics. The overall Gini coefficient of accessibility reached 0.16、0.17, indicating the equal distribution of accessibility. The accessibility of low housing price stations had a notable accessibility disadvantage. The distribution of accessibility was relatively more inequitable in low housing price stations and stations outside the 4th ring. The results of improved model showed that the inclusion of access and egress travel time resulted in an average change in accessibility of 20% and 9% with greater changes at outlying stations, and the average equity change reached 10% and 2% compared with the traditional model.
|
Received: 27 December 2023
Published: 11 February 2025
|
|
Fund: 国家自然科学基金资助项目(71621001);中央高校基本科研业务费专项资金资助项目(2023YJS134). |
Corresponding Authors:
Shunping JIA
E-mail: 22110284@bjtu.edu.cn;shpjia@bjtu.edu.cn
|
考虑末端出行的城市轨道交通就业可达性
在轨道交通与城市融合发展的背景下,基于地铁站点的步行影响范围和由共享单车订单数据识别所得的骑行影响范围,测算站点到居住小区和就业兴趣点(POI)的步行和骑行时间,提出考虑末端出行的两步移动搜索法. 结合洛伦兹曲线和基尼系数,测算和分析北京市六环内城市轨道交通站点的就业可达性及其公平性,量化末端出行对二者的影响. 结果表明,在步行和骑行2种末端出行方式下,各站点的末端出行时间平均为18.6、8.6 min,占总出行时间的29%、16%,且第一公里耗时略高于最后一公里. 城市轨道交通就业可达性由中心城区向外围沿圈层递减,呈现明显的廊道特征. 整体上基尼系数达到0.16、0.17,就业可达性分布较公平,但低房价站点存在明显的可达性劣势,局部上四环外和低房价类型站点的可达性分布相对更不均衡. 相较于传统方法,利用改进方法所得的结果显示,考虑末端出行后可达性平均变化20%、9%,且外围站点变化更大,公平性的变化程度达到10%、2%.
关键词:
城市轨道交通,
可达性,
交通公平性,
末端出行,
最后一公里,
两步移动搜索法
|
|
[1] |
KAIN J F Housing segregation, negro employment, and metropolitan decentralization[J]. The Quarterly Journal of Economics, 1968, 82 (2): 175
doi: 10.2307/1885893
|
|
|
[2] |
CERVERO R Jobs-housing balancing and regional mobility[J]. Journal of the American Planning Association, 1989, 55 (2): 136- 150
doi: 10.1080/01944368908976014
|
|
|
[3] |
张翔, 刘杰, 殷勇, 等 基于SUE客流分配的城市轨道交通可达性研究[J]. 交通运输工程与信息学报, 2019, 17 (2): 138- 145 ZHANG Xiang, LIU Jie, YIN Yong, et al Research on the accessibility of urban rail transit based on sue passenger flow assignment[J]. Journal of Transportation Engineering and Information, 2019, 17 (2): 138- 145
doi: 10.3969/j.issn.1672-4747.2019.02.018
|
|
|
[4] |
李建霆, 李璀瑾, 周鑫, 等 轨道交通可达性时空演化及对公交可达的影响: 以湖南省长沙市为例[J]. 宁夏大学学报: 自然科学版, 2021, 42 (4): 444- 448 LI Jianting, LI Cuijin, ZHOU Xin, et al Spatiotemporal evolution of rail accessibility and its impact on public transit accessibility: taking Changsha city as an example[J]. Journal of Ningxia University: Natural Science Edition, 2021, 42 (4): 444- 448
|
|
|
[5] |
CHEN S, CLARAMUNT C, RAY C A spatio-temporal modelling approach for the study of the connectivity and accessibility of the Guangzhou metropolitan network[J]. Journal of Transport Geography, 2014, 36: 12- 23
doi: 10.1016/j.jtrangeo.2014.02.006
|
|
|
[6] |
PENG J, CUI C, QI J, et al The evolvement of rail transit network structure and impact on travel characteristics: a case study of Wuhan[J]. ISPRS International Journal of Geo-Information, 2021, 10 (11): 789
doi: 10.3390/ijgi10110789
|
|
|
[7] |
ZHU P, HO S N, JIANG Y, et al Built environment, commuting behaviour and job accessibility in a rail-based dense urban context[J]. Transportation Research Part D: Transport and Environment, 2020, 87: 102438
doi: 10.1016/j.trd.2020.102438
|
|
|
[8] |
胡娜, 张纯 城市轨道交通可达性对通勤满意度的影响[J]. 城市交通, 2022, 20 (3): 90- 99 HU Na, ZHANG Chun Impacts of accessibility of urban rail transit on commuting satisfaction[J]. Urban Transport of China, 2022, 20 (3): 90- 99
|
|
|
[9] |
王姣娥, 熊美成, 黄洁 时空约束下的地铁可达性研究: 以北京为例[J]. 地理科学, 2022, 42 (1): 83- 94 WANG Jiaoe, XIONG Meicheng, HUANG Jie Subway accessibility under space-time constraints: a case study of Beijing[J]. Scientia Geographica Sinica, 2022, 42 (1): 83- 94
|
|
|
[10] |
SHAO R, DERUDDER B, YANG Y Metro accessibility and space-time flexibility of shopping travel: a propensity score matching analysis[J]. Sustainable Cities and Society, 2022, 87: 104204
doi: 10.1016/j.scs.2022.104204
|
|
|
[11] |
LYU G, BERTOLINI L, PFEFFER K How does transit-oriented development contribute to station area accessibility? a study in Beijing[J]. International Journal of Sustainable Transportation, 2020, 14 (7): 533- 543
doi: 10.1080/15568318.2019.1578841
|
|
|
[12] |
高顺祥, 陈珍, 张志健, 等 骑行替代步行后公共交通可达性改善效果评估方法[J]. 地球信息科学学报, 2023, 25 (3): 439- 449 GAO Shunxiang, CHEN Zhen, ZHANG Zhijian, et al Evaluation of improvement of public transport accessibility considering riding instead of walking[J]. Journal of Geo-information Science, 2023, 25 (3): 439- 449
doi: 10.12082/dqxxkx.2023.220495
|
|
|
[13] |
饶传坤, 雷思静 厦门岛轨道交通站点共享单车接驳影响因素研究[J]. 浙江大学学报: 理学版, 2024, 51 (1): 90‐98 RAO Chuankun, LEI Sijing Study on the influencing factors of shared bikes connection to rail transit stations in Xiamen island[J]. Journal of Zhejiang University: Science Edition, 2024, 51 (1): 90‐98
|
|
|
[14] |
LIU L, MILLER H J Measuring the impacts of dockless micro-mobility services on public transit accessibility[J]. Computers, Environment and Urban Systems, 2022, 98: 101885
doi: 10.1016/j.compenvurbsys.2022.101885
|
|
|
[15] |
MOYANO A, MOYA-GÓMEZ B, GUTIÉRREZ J Access and egress times to high-speed rail stations: a spatiotemporal accessibility analysis[J]. Journal of Transport Geography, 2018, 73: 84- 93
doi: 10.1016/j.jtrangeo.2018.10.010
|
|
|
[16] |
付晓, 李梦瑶, 陆欣, 等 考虑行程时间不确定性的服务设施时空可达性度量[J]. 交通运输系统工程与信息, 2019, 19 (2): 86- 93 FU Xiao, LI Mengyao, LU Xin, et al Measurement of space-time accessibility to service facilities considering travel time uncertainty[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (2): 86- 93
|
|
|
[17] |
ZHANG Y, FU X, YU Z, et al How does multi-modal travel enhance tourist attraction accessibility? a refined two-step floating catchment area method using multi-source data[J]. Transactions in GIS, 2024, 28 (2): 278- 302
|
|
|
[18] |
LUO W, WANG F Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region[J]. Environment and Planning B: Planning and Design, 2003, 30 (6): 865- 884
doi: 10.1068/b29120
|
|
|
[19] |
LUO W, QI Y An enhanced two-step floating catchment area (e2sfca) method for measuring spatial accessibility to primary care physicians[J]. Health and Place, 2009, 15 (4): 1100- 1107
doi: 10.1016/j.healthplace.2009.06.002
|
|
|
[20] |
中国城市规划设计研究院. 2020年度中国主要城市通勤监测报告[R]. 北京: 中国城市规划设计研究院, 2021.
|
|
|
[21] |
XING J, NG S T Analyzing spatiotemporal accessibility patterns to tertiary healthcare services by integrating total travel cost into an improved E3SFCA method in Changsha, China[J]. Cities, 2022, 122: 103541
doi: 10.1016/j.cities.2021.103541
|
|
|
[22] |
刘纪平, 曹元晖, 王勇, 等 利用网络泛地图资源评价15min生活圈医疗服务可达性: 以上海市为例[J]. 武汉大学学报: 信息科学版, 2022, 47 (12): 2054- 2063 LIU Jiping, CAO Yuanhui, WANG Yong, et al Evaluating the accessibility of medical services in the 15 min life circle using internet pan-map resources: a case study in Shanghai[J]. Geomatics and Information Science of Wuhan University, 2022, 47 (12): 2054- 2063
|
|
|
[23] |
陶卓霖, 程杨 两步移动搜寻法及其扩展形式研究进展[J]. 地理科学进展, 2016, 35 (5): 589- 599 TAO Zhuolin, CHENG Yang Research progress of the two-step floating catchment area method and extensions[J]. Progress in Geography, 2016, 35 (5): 589- 599
doi: 10.18306/dlkxjz.2016.05.006
|
|
|
[24] |
XIAO W, WEI Y D, WAN N Modeling job accessibility using online map data: an extended two-step floating catchment area method with multiple travel modes[J]. Journal of Transport Geography, 2021, 93: 103065
doi: 10.1016/j.jtrangeo.2021.103065
|
|
|
[25] |
EL-GENEIDY A, LEVINSON D, DIAB E, et al The cost of equity: assessing transit accessibility and social disparity using total travel cost[J]. Transportation Research Part A: Policy and Practice, 2016, 91: 302- 316
doi: 10.1016/j.tra.2016.07.003
|
|
|
[26] |
ZHU L, SHI F Spatial and social inequalities of job accessibility in Kunshan city, China: application of the Amap API and mobile phone signaling data[J]. Journal of Transport Geography, 2022, 104: 103451
doi: 10.1016/j.jtrangeo.2022.103451
|
|
|
[27] |
北京交通发展研究院. 2020北京市交通发展年度报告[R]. 北京: 北京交通发展研究院, 2021.
|
|
|
[28] |
CHENG L, WANG K, DE VOS J, et al Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: a quantile regression approach[J]. Transportation Research Part A: Policy and Practice, 2022, 162: 175- 187
doi: 10.1016/j.tra.2022.05.022
|
|
|
[29] |
DU Q, ZHOU Y, HUANG Y, et al Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership[J]. Journal of Transport Geography, 2022, 102: 103380
doi: 10.1016/j.jtrangeo.2022.103380
|
|
|
[30] |
王文静, 陈艳艳, 汪一泓 基于泰森多边形的地铁换乘量生成模型及影响因素分析[J]. 公路交通科技, 2021, 38 (10): 137- 143 WANG Wenjing, CHEN Yanyan, WANG Yihong A generation model of metro transfer flow and analysis on its influencing factors based on Voronoi polygons[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (10): 137- 143
doi: 10.3969/j.issn.1002-0268.2021.10.018
|
|
|
[31] |
WANG J, WAN F, DONG C, et al Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns[J]. Journal of Transport Geography, 2023, 109: 103597
doi: 10.1016/j.jtrangeo.2023.103597
|
|
|
[32] |
YANG L, YU B, LIANG Y, et al Time-varying and non-linear associations between metro ridership and the built environment[J]. Tunnelling and Underground Space Technology, 2023, 132: 104931
doi: 10.1016/j.tust.2022.104931
|
|
|
[33] |
WU X, LU Y, GONG Y, et al The impacts of the built environment on bicycle-metro transfer trips: a new method to delineate metro catchment area based on people’s actual cycling space[J]. Journal of Transport Geography, 2021, 97: 103215
doi: 10.1016/j.jtrangeo.2021.103215
|
|
|
[34] |
DING C, LIU T, YAO B, et al Understanding the time-dependent effect of built environment attributes on station-level metro ridership uncertainty in Beijing: a big data analytic approach[J]. Tunnelling and Underground Space Technology, 2023, 137: 105148
doi: 10.1016/j.tust.2023.105148
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|