Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (10): 1891-1900    DOI: 10.3785/j.issn.1008-973X.2017.10.002
Automatic Technology     
Web accessibility sampling method based on node topology characteristics
GAO Fei1, CHEN Rong-hua2, BU Jia-jun3, YU Zhi3, WANG Ying-han4, TIAN Tian5
1. College of Information Engineering, Putian University, Putian 310011, China;
2. Jiangxi Vocational College of Finance and Economics, Jiujiang 332000, China;
3. Zhejiang Provincial Key Laboratory of Service Robot, Zhejiang University, Hangzhou 310027, China;
4. Shangrao Vocational and Technical College, Shangrao 334109, China;
5. Shanghai Agency of National Audit Office, Shanghai 200051, China
Download:   PDF(2069KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As the existing sampling methods for web accessibility evaluation could not provide the samples which could give good representation of the entire website, the sampling methods could not reflect the distribution characteristics of the website sample data, which lead to some problems that make big sampling errors. A novel interval sampling algorithm based on the node's topological characteristics was proposed starting with the topological structure between web nodes in order to solve the problem. Each page was treated as a node and the similarity topological graph between web pages was constructed by the KNN-Graph algorithm. Then the importance of each node was obtained by its local and global topological characteristics and was sorted to get an orderly sequence of all the pages. The pages with interval sampling algorithm were chosen based on the sorting results. The method can achieve distributed sampling in different topological regions. The experimental data on real disabled person federation website shows that the method can achieve better results by obtaining smaller mean errors and more extensive distribution of the samples than other algorithms.



Received: 28 December 2016      Published: 27 September 2017
CLC:  TP391  
Cite this article:

GAO Fei, CHEN Rong-hua, BU Jia-jun, YU Zhi, WANG Ying-han, TIAN Tian. Web accessibility sampling method based on node topology characteristics. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1891-1900.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.10.002     OR     http://www.zjujournals.com/eng/Y2017/V51/I10/1891


基于节点拓扑特性的网站无障碍抽样方法

针对已有无障碍网站抽样算法抽取的样本代表性不高,难以满足整体样本数据的分布特征,导致抽样误差大等问题,从网页节点间的拓扑结构入手,提出基于节点拓扑特性的间隔抽样算法.把每个网页作为一个节点,通过邻近构图算法(KNN)建立网页相似度拓扑图;根据节点局部和全局拓扑性质,对节点重要性进行评估和排序;在排序结果的基础上,采用间隔抽样算法,实现不同拓扑区域的分布抽样.真实残联网站上的实验数据表明,基于节点拓扑特性的间隔抽样算法与其他算法相比,在均值误差和分布性上具有更好的效果.

[1] 刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报:工学版,2014,48(6):957-972. LIU Zhi-hui, ZHANG Quan-ling. Reseach overview of big data technology[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(6):957-972.
[2] 中国残疾人联合会关于使用2010年末全国残疾人总数及各类、不同残疾等级人数的通知[R/OL].[2012-06-26]. http://www.cdpf.org.cn/ggtz/201203/t20120312_410693.shtml.
[3] WHO,世界银行世界残疾问题报告[R/OL].[2011-06-09]. http://www.docin.com/p-297463652.html.
[4] 刘学慧,王东博,曲波,等.随机抽样方法在医学教学中的应用及计算机实现[J].中国医科大学学报,2013,42(5):460-462. LU Xue-hui, WANG Dong-bo, QU Bo, et al. Application of random sampling method in medical teaching and comuter implementation[J]. Journal of China Medical University, 2013, 42(5):460-462.
[5] WEST P W. Sample random sampling of individualitems in the absence of a sampling frame that lists the individuals[J]. New Zealand Journal of ForestryScience, 2016, 46(15):1-7.
[6] HUANG Z. Extensions to the Kmeans algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3):283-304.
[7] PAGE L, BRIN S, MOTWANI R, et al. Technical report, Stanford Digital Library Technologies Project. The PageRank citation ranking:bringing order to the web[R/OL].[2001-10-13]. http://dbpubs.stanford.edu/pub/1999-66.
[8] TAHER H H. Topic-sensitive PageRank[C]//Proceedings of the 11th International Conference on World Wide Web. Honolulu:IEEE, 2002:517-526.
[9] TAHER H H. Technical report, Stanford University. Efficient computation of PageRank[R/OL].[2000-02-25]. http://dbpubs.stanford.edu:8090/pub/1999-31.
[10] 肖俐平,孟晖,李德毅.基于拓扑势的网络节点重要性排序及评价方法[J].武汉大学学报:信息科学版,2008,33(4):380-383. XIAO Li-ping, MENG Hui, LI De-yi. Approach to node ranking in a network based on topology potential[J]. Geomatics and Information Science of Wuhan Uni-versity, 2008, 33(4):380-383.
[11] XU H, ZHANG J P, YANG J. Measurement of nodes importance for structural-holes-oriented[C]//Proceedings of Pioneering Computer Scientists, Engineers and Educators(ICYCSEE). Harbin:Springer, 2016:458-469.
[12] ULRIKE V L. A tutorial on spectral clustering[J]. Statistics and Computing. 2007, 17(4):395-416.
[13] ZHANG S C, ZONG M, SUN K, et al. Efficient KNN algorithm based on graph sparse reconstruction[C]//Proceedings of Advanced Data Mining and Applications(ADMA). Guilin:[s. n.], 2014:356-369.
[14] MASAJIRO I. Pruned bi-directed K-nearest neighbor graph for proximity search[C]//Proceedings of Similarity Search and Applications (SISAP). Tokyo:Springer, 2016:20-33.
[15] UGUR D, FAMOUSH B, CYRUS S, et al. Towards K-nearest neighbor search in time dependent spatial network databases[C]//Proceedings of Databases in Networked Information Systems(DNIS). Aizu-Wakamatsu:Springer, 2010:296-310.
[16] MAX K, JORGEN Z. A. Similarity measure in Bayesian classification based on characteristic attributes of objects[C]//Proceedings of Information Fusion. Heidelberg:IEEE, 2016, 5:1-8.
[17] ALFIRNA R L, ADHISTYA E P, NOOR A S. Cosine similarity to determine similarity measure:Study case in online essay assessment[C]//Proceedings of International Conference on Cyber and it Service management. Djakarta:IEEE, 2016.
[18] GOBEL F, JAGERS A A. Random walks on graphs[J]. Stochastic Processes and Their Applications, 1974, 2(4):311-336.
[19] SEAN G, TINA E R, LAN D. Guided learning for role discovery (GLRD):framework, algorithms, and applications[C]//Proceedings of Knowledge Discovery and Data Mining. Chicago:ACM, 2013:113-121.
[20] WATTS D J, STROGATZ S H. Collective dynamics of "small-world" networks[J]. Nature. 1998, 393:440-442.
[21] MURIEL G, RICARDO A, JOSE C Q, et al. Encyclopedia of astrobiology[M]. Berlin:Springer, 2011,3(3):28-29.
[22] FREEMAN L C. A set of measures of centrality based upon betweenness[J]. Sociometry, 1977, 40(1):35-41.
[23] 于会,刘尊,李勇.基于多属性决策的复杂网络节点重要性综合评价方法[J].物理学报,2013, 62(2):41-49. YU Hui, LIU Zun, LI Yong. Key nodes in complex networks identified by multi-attribute decision-making method[J]. Acta Physica Sinica, 2013, 62(2):41-49.
[24] HENZINGER M R, HEYDON A, MITZENMACHER M, et al.On near-uniform URL sampling[J].Computer Networks, 2000, 33(1):295-308.
[25] ZHANG M N, WANG C, BU J J, et al. A sampling method based on URL clustering for fast Web accessibility evaluation[J]. Frontiers of Information Technology and Electronic Engineering, 2015, 16(6):449-456.
[26] 周宇.基于抽样和模板的网站无障碍检测方法[D].杭州:浙江大学, 2014. ZHOU Yu. Web accessibility evaluation approaches based on sampling and template detection[D]. Hangzhou:Zhejiang University, 2014.

[1] HAN Yong, NING Lian-ju, ZHENG Xiao-lin, LIN Wei-hua, SUN Zhong-yuan. Matrix factorization recommendation based on social information and item exposure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 89-98.
[2] ZHENG Zhou, ZHANG Xue-chang, ZHENG Si-ming, SHI Yue-ding. Liver segmentation in CT images based on region-growing and unified level set method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2382-2396.
[3] ZHAO Li-ke, ZHENG Shun-yi, WANG Xiao-nan, HUANG Xia. Rigid object position and orientation measurement based on monocular sequence[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2372-2381.
[4] HE Jie-guang, PENG Zhi-ping, CUI De-long, LI Qi-rui. Teaching-learning-based optimization algorithm with local dimension improvement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2159-2170.
[5] LI Zhi, SHAN Hong, MA Tao, HUANG Jun. Group discovery of mobile terminal users based on reverse-label propagation algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2171-2179.
[6] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[7] WEI Xiao-feng, CHENG Cheng-qi, CHEN Bo, WANG Hai-yan. Chain code based on independent edge number[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1686-1693.
[8] CHEN Rong-hua, WANG Ying-han, BU Jia-jun, YU Zhi, GAO Fei. Website accessibility sampling evaluation based on KNN and local regression[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1702-1708.
[9] ZHANG Cheng-zhi, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Piecewise noise variance estimation of images based on wavelet transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1804-1810.
[10] LIU Zhou-zhou, LI Shi-ning, LI Bin, WANG Hao, ZHANG Qian-yun, ZHENG Ran. New elastic collision optimization algorithm and its application in sensor cloud resource scheduling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1431-1443.
[11] WANG Yong-chao, ZHU Kai-lin, WU Qi-xuan, LU Dong-ming. Adaptive display technology of high precision model based on local rendering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1461-1466.
[12] SUN Nian, LI Yu-qiang, LIU Ai-hua, LIU Chun, LI Wei-wei. Microblog sentiment analysis based on collaborative learning under loose conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1452-1460.
[13] ZHENG Shou-guo, CUI Yan-min, WANG Qing, YANG Fei, CHENG Liang. Design of field data acquisition platform for aircraft assembly[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1526-1534.
[14] BI Xiao-jun, WANG Chao. Many-objective evolutionary algorithm based on hyperplane projection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1284-1293.
[15] ZHANG Ting-rong, TENG Qi-zhi, LI Zheng-ji, QING Lin-bo, HE Xiao-hai. Super-resolution reconstruction for three-dimensional core CT image[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1294-1301.