Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (1): 100-108    DOI: 10.3785/j.issn.1008-973X.2025.01.010
    
Dynamic response detection for solenoid switching valve considering temperature rising of coil
Xianjian HE1,2,3(),Enguang XU1,2,Jun WANG3,Qi ZHONG1,2,3,*(),Yanbiao LI1,2,Huayong YANG4
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
3. Zhejiang Haihong Hydraulic Technology Limited Company, Linhai 317000, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(3734KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A non-destructive identification method for the dynamic performance of the solenoid switching valve (SSV) based on multi-order current derivative characteristics was proposed, aiming at the problem that the moving process of the valve spool inside the SSV was difficult to detect accurately. Considering the effect of the solenoid’s temperature rising on the coil resistance, a mathematical model among the coil inductance derivative, current derivative and spool moving velocity was established. The matching relationship between the current derivative and spool moving state was explored based on the experimental magnetization curve, and the influence of the permeability derivative on the judgment for each switching state of the SSV was analyzed. Theoretical analysis deduced that the convex point and concave point on the opening current derivative curves corresponded to the critical opening moment and fully opened moment of the SSV, and the upper and lower turning points on the closing current derivative curves matched the critical closing moment and fully closed moment of the SSV. Experimental results showed that the maximum measurement deviations of opening time and closing time were 2.40% and 3.08%, respectively, and the maximum measurement deviation of total switching time in a single cycle was 1.49%.



Key wordssolenoid switching valve      temperature rising characteristic      dynamic performance      high accuracy detection      current derivative     
Received: 30 January 2024      Published: 18 January 2025
CLC:  TH 137  
Fund:  国家自然科学基金资助项目(52005441);中国科协青年人才托举工程项目(2022QNRC001);浙江省自然科学基金资助项目(LQ21E050017);浙江省“领雁”研发攻关计划项目(2022C01122、2022C01132);浙江省属高校基本科研业务费资助项目(RF-A2023007);机械系统与振动国家重点实验室开放基金课题资助项目(MSV202316);浙江工业大学科技成果转化项目(GYY-ZH-2023075).
Corresponding Authors: Qi ZHONG     E-mail: hexianjian985@163.com;zhongqi@zjut.edu.cn
Cite this article:

Xianjian HE,Enguang XU,Jun WANG,Qi ZHONG,Yanbiao LI,Huayong YANG. Dynamic response detection for solenoid switching valve considering temperature rising of coil. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 100-108.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.01.010     OR     https://www.zjujournals.com/eng/Y2025/V59/I1/100


考虑线圈温升的电磁开关阀动态响应特性检测

针对电磁开关阀内部阀芯运动过程难以被精准检测的问题,提出基于电流多阶导数特性的电磁开关阀动态性能无损识别方法. 考虑电磁铁线圈温升对线圈电阻的影响规律,以线圈电感导数、电流导数和阀芯运动速度建立数学模型. 基于磁化曲线探究电流导数与阀芯运动状态的匹配关系,分析磁导率导数对判断电磁开关阀启闭状态的影响规律. 推导得到开启电流导数中的凸/凹点对应电磁开关阀的临界/完全开启时刻,关闭电流导数中的上/下折点匹配电磁开关阀的临界/完全关闭时刻. 试验结果表明,开启和关闭时间最大检测偏差分别为2.40%和3.08%,单周期总启闭时间最大检测偏差为1.49%.


关键词: 电磁开关阀,  温升特性,  动态性能,  高精度检测,  电流导数 
Fig.1 Structure of solenoid switching valve
Fig.2 Force analysis of valve spool
Fig.3 Magnetization curve of soft magnetic materials for solenoid switching valve
Fig.4 Magnetic permeability and its derivative curve of soft magnetic materials
Fig.5 Force analysis of solenoid switching valve at different opening and closing moments
Fig.6 Test platform for dynamic performance of solenoid switching valve
仪器名称型号最大采样频率/(kS·s?1
激光位移传感器LK-G15550
线圈电流数据采集卡NI 922750
阀芯位移数据采集卡NI 9205250
Tab.1 Main parameters of test platform
Fig.7 Temperature distribution of solenoid switching valve
Fig.8 Temperature curve of solenoid’s coil
Fig.9 Resistance variation under temperature rising of solenoid’s coil
Fig.10 Dynamic performance of solenoid switching valve in opening stage
Fig.11 Dynamic performance of solenoid switching valve in closing stage
Fig.12 Measurement deviation of solenoid switching valve at different stages under different temperature rise conditions
Fig.13 Displacement detection principle and mass measurement of solenoid switching valve
Fig.14 Continuous switching dynamic performance with 50 Hz driving frequency
Fig.15 Continuous switching dynamic performance with 100 Hz driving frequency
[1]   YANG H Y, PAN M Engineering research in fluid power: a review[J]. Journal of Zhejiang University: Science A, 2015, 16 (6): 427- 442
doi: 10.1631/jzus.A1500042
[2]   SUN D, JIAO Z, SHANG Y, et al High-efficiency aircraft antiskid brake control algorithm via runway condition identification based on an on-off valve array[J]. Chinese Journal of Aeronautics, 2019, 32 (11): 2538- 2556
doi: 10.1016/j.cja.2019.08.020
[3]   ZHONG Q, BAO H, LI Y, et al Investigation into the independent metering control performance of a twin spools valve with switching technology-controlled pilot[J]. Chinese Journal of Mechanical Engineering, 2021, 34: 91
doi: 10.1186/s10033-021-00616-w
[4]   ZHAO J, WANG M, WANG Z, et al Different boost voltage effects on the dynamic response and energy losses of high-speed solenoid valves[J]. Applied Thermal Engineering, 2017, 123: 1494- 1503
doi: 10.1016/j.applthermaleng.2017.05.117
[5]   WANG P, CHENG Y, LINJAMA M, et al A novel equivalent continuous metering control with a uniform switching strategy for digital valve system[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28 (5): 2449- 2460
doi: 10.1109/TMECH.2023.3247220
[6]   WANG H, CHEN Z, HUANG J, et al Development of high-speed on-off valves and their applications[J]. Chinese Journal of Mechanical Engineering, 2022, 35 (1): 1- 21
doi: 10.1186/s10033-021-00666-0
[7]   钟麒, 张斌, 洪昊岑, 等 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报: 工学版, 2018, 52 (1): 8- 15
ZHONG Qi, ZHANG Bin, HONG Haocen, et al Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 8- 15
[8]   丁凡, 姚健娣, 笪靖, 等 高速开关阀的研究现状[J]. 中国工程机械学报, 2011, 9 (3): 351- 358
DING Fan, YAO Jiandi, DA Jing, et al Advances on high-speed on-off valves[J]. Chinese Journal of Construction Machinery, 2011, 9 (3): 351- 358
doi: 10.3969/j.issn.1672-5581.2011.03.020
[9]   ZHONG Q, JIA T, XU E, et al A vibration-based measurement method for dynamic characteristic of solenoid switching valve[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 7500810
[10]   ZHONG Q, WANG X, ZHOU H, et al Investigation into the adjustable dynamic characteristic of the high-speed/valve with an advanced pulsewidth modulation control algorithm[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27 (5): 3784- 3797
doi: 10.1109/TMECH.2021.3131095
[11]   KONG X, LI S Dynamic performance of high speed solenoid valve with parallel coils[J]. Chinese Journal of Mechanical Engineering, 2014, 27 (4): 816- 821
doi: 10.3901/CJME.2014.0513.091
[12]   RAHMAN M F, CHEUNG N C, LIM K W Position estimation in solenoid actuators[J]. IEEE Transactions on Industry Applications, 1996, 32 (3): 552- 559
doi: 10.1109/28.502166
[13]   王文静. 基于阀芯位移软测量的数字阀多级电压智能驱动方法研究[D]. 秦皇岛: 燕山大学, 2022: 1–68.
WANG Wenjing. Multistage voltage intelligent driving method of digital valve based on soft sensor of valve core displacement [D]. Qinhuangdao: Yanshan University, 2022: 1–68.
[14]   AHN K, YOKOTA S Intelligent switching control of pneumatic actuator using on/off solenoid valves[J]. Mechatronics, 2005, 15 (6): 683- 702
doi: 10.1016/j.mechatronics.2005.01.001
[15]   ABOROBAA A N, GHAMRY K A, SALEH A, et al Energy-saving and performanceenhancing of a high speed on/off solenoid valve[J]. FME Transactions, 2022, 50 (2): 283- 293
doi: 10.5937/fme2201283A
[16]   WANG Q, YANG F, YANG Q, et al Experimental analysis of new high-speed powerful digital solenoid valves[J]. Energy Conversion and Management, 2011, 52 (5): 2309- 2313
doi: 10.1016/j.enconman.2010.12.032
[17]   YUDELL A C, VAN DE VEN J D Predicting solenoid valve spool displacement through current analysis[J]. International Journal of Fluid Power, 2015, 16 (3): 133- 140
doi: 10.1080/14399776.2015.1068549
[18]   GAO Q, ZHU Y, WU C, et al Identification of critical moving characteristics in high speed on/off valve based on time derivative of the coil current[J]. Journal of Systems and Control Engineering, 2021, 235 (7): 1084- 1099
[19]   ZHONG Q, XU E, XIE G, et al Dynamic performance and temperature rising characteristic of a high-speed on/off valve based on pre-excitation control algorithm[J]. Chinese Journal of Aeronautics, 2023, 36 (10): 445- 458
doi: 10.1016/j.cja.2023.04.005
[20]   汪谢乐. 高速开关阀电磁驱动能耗与温度场特性研究[D]. 杭州: 浙江工业大学, 2022: 1–78.
WANG Xiele. Research on electromagnetic driving energy consumption and temperature field characteristics of high speed on/off valve [D]. Hangzhou: Zhejiang University of Technology, 2022: 1–78.
[21]   徐哲. 汽车线控液压制动系统特性及控制研究[D]. 南京: 南京航空航天大学, 2014: 1–129.
XU Ze. Research on characteristic and control of electro-hydraulic brake system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 1–129.
[1] Jianping GAN,Xiaoli YU,Jinwei CHANG,Rui HUANG,Junxuan CHEN,Zhi LI. Influence of solution temperature fluctuation on performance of dynamic regeneration process[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2104-2110.
[2] Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
[3] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[4] Fang-ping HUANG,Guo-fang GONG,Can-jun YANG,Hua-yong YANG. Simulation and experimental study of energy-capturing and wave-dissipating floating breakwater with S type blade[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 866-874.
[5] Zhi-wen ZHAN,Ling-xin ZHANG,Jian DENG,Xue-ming SHAO. Numerical simulation of acoustic characteristics on DTMB 4119 propeller[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 767-774.
[6] ZHONG Qi, ZHANG Bin, HONG Hao-cen, YANG Hua-yong. Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 8-15.
[7] KE Shi tang, YU Wei, WANG Tong guang. Impact for blade position on aerodynamic performance of wind turbine system under stopped status[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1230-1238.
[8] WANG Ting, CHEN Bin, YAO Wen-xi, LV Zheng-yu. Pefrormance analysis of holtz flux observer in speed-sensorless induction motor drive[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1690-1695.
[9] CHEN Xu-dong, CHENG Fang, FENG Pan. Dynamic performance analysis of high-order control system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 141-148.
[10] ZHONG Wei,YANG Zhi-qun,SONG Dong-gen,HU Ji-guang ,TONG Shui-guang. Hydrodynamic performance design of the radiation chamber of a waste-heat boiler for copper flash smelting[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1970-1975.
[11] YAO Hua, SHENG De-ren, CHEN Jian-hong, LI Wei, HONG Rong-hua. Thermodynamic analysis of gravity heatpipe steam generator[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1678-1684.
[12] LIN Chao, YU Song-song, CHENG Kai, Cui Xin-hui, TAO You-tao,WANG Jing-chao. Dynamic analysis and testing of micro/nano-positioning platform[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1375-1381.
[13] NI Yi-hua, SONG Fang-fang, GUO Hai. Customized development for wind turbine blade design and
aerodynamic performance simulation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 315-320.
[14] XU Guo-jie,ZHUO Xin,SHOU Quan-gen,QIU Li-ming,FAN Feng. Structural performance of TH-Levy cable dome when
local component failure
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1281-1287.
[15] XIN Xiao-peng, SHAO Xue-ming, DENG Jian, LI Wei. Hydrodynamic performance prediction of marine current turbine with
dual rotor in tandem arrangement
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1227-1231.