Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2104-2110    DOI: 10.3785/j.issn.1008-973X.2024.10.014
    
Influence of solution temperature fluctuation on performance of dynamic regeneration process
Jianping GAN1(),Xiaoli YU1,2,Jinwei CHANG1,Rui HUANG1,2,*(),Junxuan CHEN1,Zhi LI1
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Automotive Intelligent Thermal Management Science and Technology of Zhejiang Province, Taizhou 317200, China
Download: HTML     PDF(1089KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamic model of the regenerator was developed to investigate the influence of solution temperature fluctuation on regeneration performance. An experimental platform of solution regeneration system was built to verify the model. The simulation was conducted to investigate the effects of average temperature, fluctuation period, and amplitude of the solution temperature on the range of solution mass fraction and average regeneration rate. Results show that the average temperature of the solution has the most significant impact on the average regeneration rate, while the fluctuation amplitude has the greatest influence on the range of solution mass fraction. When the temperature fluctuation period of the solution is 0.5 h, the average regeneration rate shows an increase with the rise of the fluctuation amplitude. With a fluctuation period of 2.0 h, the average regeneration rate is primarily affected by the average temperature of the solution. The range of solution mass fraction increases with the fluctuation period increases when the temperature fluctuation amplitude is small. Whereas, when the amplitude is large, the mass fraction range exhibits a descending trend with the increase in the period.



Key wordssolution regeneration      temperature fluctuation      dynamic performance      regeneration rate     
Received: 10 August 2023      Published: 27 September 2024
CLC:  TU 83  
Fund:  宁波市科技创新2025重大专项资助项目(2022Z151);国家自然科学基金资助项目(51976176).
Corresponding Authors: Rui HUANG     E-mail: jpgan@zju.edu.cn;hrss@zju.edu.cn
Cite this article:

Jianping GAN,Xiaoli YU,Jinwei CHANG,Rui HUANG,Junxuan CHEN,Zhi LI. Influence of solution temperature fluctuation on performance of dynamic regeneration process. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2104-2110.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.014     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2104


溶液温度波动对动态再生过程的性能影响

为了明晰溶液再生温度波动对溶液再生性能的影响规律,建立再生器的动态仿真模型. 搭建溶液再生系统实验台,设计开展溶液再生过程的动态实验,验证动态模型的准确性. 通过仿真模拟分析溶液再生温度的平均温度、波动周期与幅值对再生溶液质量分数极差和平均再生量的影响规律. 结果表明,溶液平均温度对平均再生量的影响最为明显,溶液温度波动幅值对再生溶液质量分数极差的影响最大. 当溶液温度波动周期为0.5 h时,平均再生量随波动幅值的增大而增大;当波动周期为2.0 h时,平均再生量主要受溶液平均温度的影响. 再生溶液质量分数极差在温度波动幅值小时随波动周期的增大而增大,在幅值大时随周期的增大而减小.


关键词: 溶液再生,  温度波动,  动态性能,  再生量 
Fig.1 Principle of solution regeneration system driven by waste heat
Fig.2 Simplified diagram of control volume for regenerator model
Fig.3 Simplified diagram of storage tank model
Fig.4 Experiment platform of solution regeneration system
名称型号精度量程
热电阻PT100±0.1 ℃?70~200 ℃
空气温湿度传感器KS-SHTE23T±2% (RH),
±0.2 ℃
0~100% (RH),
?40~125 ℃
热式气体质量流量计TOCEIL-20N080±1%0~750 kg/h
电磁流量计CKLDY-G-D10-J±0.5%0.03~2.80 m3/h
密度计CJM-2012010?3 g/cm31.0~1.7 g/cm3
Tab.1 Specification of measuring devices
Fig.5 Outlet parameters of air and desiccant solution
Fig.6 Influence of average solution temperature on solution mass fraction range and regeneration rate
Fig.7 Influence of solution temperature fluctuation period on solution mass fraction range and regeneration rate
Fig.8 Curve of solution mass fraction with time
Fig.9 Influence of solution temperature fluctuation amplitude on solution mass fraction range and regeneration rate
[1]   LUO Y, YANG H, LU L Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier[J]. Applied Energy, 2014, 136: 1018- 1025
doi: 10.1016/j.apenergy.2014.06.023
[2]   WANG L, XIAO F, NIU X, et al Experimental study of dynamic characteristics of liquid desiccant dehumidification processes[J]. Science and Technology for the Built Environment, 2017, 23 (1): 91- 104
doi: 10.1080/23744731.2016.1211875
[3]   ZHANG X, ZHU Y, XU X, et al Dynamic operational characteristics and preliminary control of a packed liquid desiccant dehumidifier[J]. Energy and Buildings, 2021, 248: 111185
doi: 10.1016/j.enbuild.2021.111185
[4]   OU X, CAI W, HE X, et al Dynamic model development of heat and mass transfer for a novel desiccant regeneration system in liquid desiccant dehumidification system[J]. Applied Thermal Engineering, 2018, 145: 375- 385
doi: 10.1016/j.applthermaleng.2018.09.027
[5]   WANG L, XIAO F, NIU X, et al A dynamic dehumidifier model for simulations and control of liquid desiccant hybrid air conditioning systems[J]. Energy and Buildings, 2017, 140: 418- 429
doi: 10.1016/j.enbuild.2017.01.073
[6]   ZHANG X, XU X, ZHU Y An improved time delay neural network model for predicting dynamic heat and mass transfer characteristics of a packed liquid desiccant dehumidifier[J]. International Journal of Thermal Sciences, 2022, 177: 107548
doi: 10.1016/j.ijthermalsci.2022.107548
[7]   JIANG Y, WANG X, ZHAO H, et al Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning[J]. Applied Energy, 2020, 259: 114174
doi: 10.1016/j.apenergy.2019.114174
[8]   ZHANG X, XU X, MA X Development of a new control method for the dynamic liquid desiccant dehumidification process[J]. Energy and Buildings, 2022, 269: 112239
doi: 10.1016/j.enbuild.2022.112239
[9]   SUESS P, SPIEGEL L Hold-up of Mellapak structured packings[J]. Chemical Engineering and Processing: Process Intensification, 1992, 31 (2): 119- 124
doi: 10.1016/0255-2701(92)85005-M
[10]   QU H, ZHANG L, ZHANG X Analysis and comparison of flow path and operating parameters in liquid desiccant systems[J]. Applied Thermal Engineering, 2021, 195: 117078
[11]   YUAN Z, HEROLD K E Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation[J]. HVAC&R Research, 2005, 11 (3): 377- 393
[12]   LIU W, GONG Y, NIU X, et al Dynamic modeling of liquid-desiccant regenerator based on a state-space method[J]. Applied Energy, 2019, 240: 744- 753
doi: 10.1016/j.apenergy.2019.02.082
[13]   KABEEL A E, KHALIL A, ELSAYED S S, et al Dynamic behaviour simulation of a liquid desiccant dehumidification system[J]. Energy, 2018, 144: 456- 471
doi: 10.1016/j.energy.2017.11.161
[14]   COCA-ORTEGÓN A, PRIETO J, CORONAS A Modelling and dynamic simulation of a hybrid liquid desiccant system regenerated with solar energy[J]. Applied Thermal Engineering, 2016, 97: 109- 117
doi: 10.1016/j.applthermaleng.2015.10.149
[15]   蒋润花, 杨晓西, 杨敏林, 等 内燃机缸套水低温余热驱动除湿机组实验研究[J]. 工程热物理学报, 2014, 35 (12): 2338- 2342
JIANG Runhua, YANG Xiaoxi, YANG Minlin, et al The experimental research of dehumidification unit driven by low temperature waste heat of internal combustion engine jacket water[J]. Journal of Engineering Thermophysics, 2014, 35 (12): 2338- 2342
[16]   曾台烨, 张小松, 陈瑶 利用冷凝热再生低浓度除湿溶液的实验研究[J]. 制冷学报, 2018, 39 (1): 76- 82
ZENG Taiye, ZHANG Xiaosong, CHEN Yao Experimental investigation for low-concentration liquid desiccant regeneration with utilization of condensation heat[J]. Journal of Refrigeration, 2018, 39 (1): 76- 82
doi: 10.3969/j.issn.0253-4339.2018.01.076
[17]   彭汉明. 低温余热驱动的液体除湿技术研究[D]. 广州: 华南理工大学, 2012.
PENG Hanming. Study on the liquid desiccant technology with low-temperature waste heat [D]. Guangzhou: South China University of Technology, 2012.
[18]   陈博闻. 低品位热驱动高效吸收式制冷除湿一体化系统的研究[D]. 南京: 东南大学, 2020.
CHEN Bowen. An innovative energy-efficient air conditioning system driven by low-grade heat [D]. Nanjing: Southeast University, 2020.
[19]   唐艺丹. 余热驱动的溶液除湿空调系统特性研究[D]. 哈尔滨:哈尔滨工业大学,2009.
TANG Yidan. Research on characteristics of waste heat driven liquid desiccant air-conditioning system [D]. Harbin: Harbin Institute of Technology, 2009.
[1] Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
[2] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[3] Fang-ping HUANG,Guo-fang GONG,Can-jun YANG,Hua-yong YANG. Simulation and experimental study of energy-capturing and wave-dissipating floating breakwater with S type blade[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 866-874.
[4] Zhi-wen ZHAN,Ling-xin ZHANG,Jian DENG,Xue-ming SHAO. Numerical simulation of acoustic characteristics on DTMB 4119 propeller[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 767-774.
[5] ZHONG Qi, ZHANG Bin, HONG Hao-cen, YANG Hua-yong. Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 8-15.
[6] KE Shi tang, YU Wei, WANG Tong guang. Impact for blade position on aerodynamic performance of wind turbine system under stopped status[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1230-1238.
[7] FANG Meng-xiang, JIANG Wen-min, WANG Tao, XIANG Qun-yang, LU Jia-hui, ZHOU Xu-ping. Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1565-1571.
[8] WANG Ting, CHEN Bin, YAO Wen-xi, LV Zheng-yu. Pefrormance analysis of holtz flux observer in speed-sensorless induction motor drive[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1690-1695.
[9] CHEN Xu-dong, CHENG Fang, FENG Pan. Dynamic performance analysis of high-order control system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 141-148.
[10] ZHONG Wei,YANG Zhi-qun,SONG Dong-gen,HU Ji-guang ,TONG Shui-guang. Hydrodynamic performance design of the radiation chamber of a waste-heat boiler for copper flash smelting[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1970-1975.
[11] YAO Hua, SHENG De-ren, CHEN Jian-hong, LI Wei, HONG Rong-hua. Thermodynamic analysis of gravity heatpipe steam generator[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1678-1684.
[12] LIN Chao, YU Song-song, CHENG Kai, Cui Xin-hui, TAO You-tao,WANG Jing-chao. Dynamic analysis and testing of micro/nano-positioning platform[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1375-1381.
[13] NI Yi-hua, SONG Fang-fang, GUO Hai. Customized development for wind turbine blade design and
aerodynamic performance simulation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 315-320.
[14] XU Guo-jie,ZHUO Xin,SHOU Quan-gen,QIU Li-ming,FAN Feng. Structural performance of TH-Levy cable dome when
local component failure
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1281-1287.
[15] XIN Xiao-peng, SHAO Xue-ming, DENG Jian, LI Wei. Hydrodynamic performance prediction of marine current turbine with
dual rotor in tandem arrangement
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1227-1231.