Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (12): 2556-2566    DOI: 10.3785/j.issn.1008-973X.2024.12.015
    
Effect of gas reservoir volume on cryogenic loop heat pipes
Chenyang ZHAO1,2(),Nanxi LI1,*(),Junting LI1,2,Zhenhua JIANG1,2,Yinong WU1,2
1. Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML     PDF(1139KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The gas reservoir volume of a cryogenic loop heat pipe (CLHP) is usually 30 to 100 times the total volume of the other components, and its weight accounts for the largest proportion. To realize the lightweight design of CLHPs and improve the utilization rate of satellite payload resources, research was conducted on the mechanism of the influence of gas reservoir volume on the startup and steady-state operating characteristics of CLHPs. A start-up model and a steady-state failure model of CLHPs were established, and theoretical and experimental validation studies were carried out on the influence of gas reservoir volume on key parameters of the condensation temperature, evaporation temperature of the secondary evaporator and heat transfer thermal resistance. Results showed that, by increasing the design value of the evaporation temperature of the secondary evaporator, the CLHP experimental prototype started up smoothly with a gas reservoir volume only 11 times the total volume of the other components. The effect of different gas reservoir volumes on the heat transfer thermal resistance of CLHPs was negligible when the primary heat load was high. When the volume of the primary compensation chamber was certain, the regulating ability of the primary compensation chamber could be enhanced by decreasing the volume of the gas reservoir, thereby expanding the range of primary heat load for stable operation of the CLHPs.



Key wordscryogenic loop heat pipe      startup characteristic      steady state      gas reservoir      compensation chamber     
Received: 30 October 2023      Published: 25 November 2024
CLC:  TK 124  
Fund:  中国科学院率先行动“引才计划”B类人才项目;中国科学院战略性先导科技专项(B类)(XDB35000000,XDB35040102).
Corresponding Authors: Nanxi LI     E-mail: zhaochenyang@mail.sitp.ac.cn;linanxi@mail.sitp.ac.cn
Cite this article:

Chenyang ZHAO,Nanxi LI,Junting LI,Zhenhua JIANG,Yinong WU. Effect of gas reservoir volume on cryogenic loop heat pipes. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2556-2566.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.12.015     OR     https://www.zjujournals.com/eng/Y2024/V58/I12/2556


气库容积对低温环路热管的影响

低温环路热管(CLHP)的气库容积通常为其余部件总容积的30~100倍,重量占比最大. 为了实现CLHP的轻量化设计,提高卫星载荷资源的利用率,开展气库容积对CLHP启动与稳态工作特性影响的机理研究. 建立CLHP的启动模型和稳态失效模型,开展气库容积对冷凝温度、次蒸发温度和传热热阻等关键参数影响的理论与实验验证研究. 结果表明:通过提高次蒸发温度设计值,CLHP实验样机可在气库容积仅为其余部件总容积的11倍的情况下顺利启动;当主热负荷较高时,不同气库容积对CLHP传热热阻影响较小;当主储液器容积一定时,可通过减小气库容积增强主储液器的调节能力,使CLHP稳定运行的热负荷范围增加.


关键词: 低温环路热管,  启动特性,  稳态,  气库,  储液器 
Fig.1 Schematic diagram of cryogenic loop heat pipe structure
Fig.2 Schematic diagram of start-up phase of cryogenic loop heat pipes
Fig.3 Thermodynamic state diagram
Fig.4 Experimental prototype of cryogenic loop heat pipe
部件结构参数
主/次蒸发器14.0 / 15.5$ \times $80 mm (内径/外径$ \times $长度)
主/次外层毛细芯5×70 / 14×75 mm(内径×内长度/外径×外长度)
1/1×70×12 (槽宽 / 槽深×长×道个数)
2 μm(孔径)0.53(孔隙率)镍(材料)
主/次内层毛细芯3.5/5.0×70 mm(内径/外径×长度)
20 μm(孔径)0.7(孔隙率)316 L(材料)
主/次储液器14.0 / 15.5×60 mm (内径/外径×长度)
主冷凝器2 / 3×866 mm (内径/外径×长度)
次冷凝器2 / 3×219 mm (内径/外径×长度)
主液体管线2 / 3×1 210 mm (内径/外径×长度)
主气体管线2 / 3×1 240 mm (内径/外径×长度)
气库500、1 000、2 000 mL
Tab.1 Experimental prototype parameters
Fig.5 Schematic diagram of experimental system
Fig.6 Temperature profile of CLHP start-up process with gas reservoir volume of 1 000 mL and heat sink temperature of 170 K
Fig.7 Temperature profile of CLHP start-up process with gas reservoir volume of 500 mL and heat sink temperature of 230 K
Fig.8 Effect of heat sink temperature and gas reservoir volume on condensing temperature
Fig.9 Effect of heat sink temperature and gas reservoir volume on evaporation temperature of secondary evaporator
Fig.10 Effect of gas reservoir volume on heat transfer resistance with secondary heat load of 5 W
Fig.11 Effect of gas reservoir volume on heat transfer resistance with secondary heat load of 0 W
Fig.12 Quality of working fluid in each component with temperature of 170~230 K
Fig.13 Effects of gas reservoir volume and evaporation temperature on changes in working fluid quality in gas reservoir
Fig.14 Effect of primary heat load on thermal resistance and failure with heat sink temperature of 170 K
Fig.15 Effect of primary heat load on thermal resistance and failure with heat sink temperature of 190 K
Fig.16 Effect of primary heat load on thermal resistance and failure with heat sink temperature of 210 K
Fig.17 Effect of primary heat load on thermal resistance and failure with heat sink temperature of 230 K
[1]   甘智华, 王博, 刘东立, 等 空间液氦温区机械式制冷技术发展现状及趋势[J]. 浙江大学学报: 工学版, 2012, 46 (12): 2160- 2177
GAN Zhihua, WANG Bo, LIU Dongli, et al Status and development trends of space mechanical refrigeration system at liquid helium temperature[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (12): 2160- 2177
doi: 10.3785/j.issn.1008-973X.2012.12.005
[2]   甘智华, 陶轩, 刘东立, 等 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报: 工学版, 2015, 49 (10): 1821- 1835
GAN Zhihua, TAO Xuan, LIU Dongli, et al Development status of spacecryogenic technology at liquid helium temperature in Japan[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (10): 1821- 1835
[3]   JIANG Z, WU Y, LU Z, et al On-orbit performance of the FY-4 GIIRS stirling cryocooler over 2 years[J]. Journal of Low Temperature Physics, 2021, 203: 244- 253
doi: 10.1007/s10909-021-02570-2
[4]   ROSS JR R G. A study of the use of 6 K ACTDP cryocoolers for the MIRI Instrument on JWST [C]// International Cryocooler Conference . New Orleans: Springer, 2005: 15–24.
[5]   刘东立, 吴镁, 汪伟伟, 等 詹姆斯·韦伯太空望远镜低温制冷系统的发展历程[J]. 低温工程, 2013, 6: 56- 62
LIU Dongli, WU Mei, WANG Weiwei, et al Development of cryogenic system for James Webb Space Telescope[J]. Cryogenics, 2013, 6: 56- 62
doi: 10.3969/j.issn.1000-6516.2013.01.012
[6]   GROB E W. System accommodation of propylene loop heat pipes for the geoscience laser altimeter system (GLAS) instrument [C]// 31st International Conference on Environmental Systems . Orlando, [s.n.], 2001: 2263.
[7]   BAI L, ZHANG L, LIN G, et al Development of cryogenic loop heat pipes: a review and comparative analysis[J]. Applied Thermal Engineering, 2015, 89: 180- 191
doi: 10.1016/j.applthermaleng.2015.06.010
[8]   HOANG T T, O'CONNELL T A, KU J, et al. Design optimization of a hydrogen advanced loop heat pipe for space-based IR sensor and detector cryocooling [C]// Cryogenic Optical Systems and Instruments X SPIE . San Diego: [s.n.], 2003: 86−96.
[9]   HOANG T T, O’CONNELL T A, KU J, et al. Performance demonstration of hydrogen advanced loop heat pipe for 20~30 K cryocooling of far infrared sensors [C]// Cryogenic Optical Systems and Instruments XI SPIE . San Diego: [s.n.], 2005: 590410.
[10]   HOANG T T, O’CONNELL T A, KHRUSTALEV D K. Development of a flexible advanced loop heat pipe for across-gimbal cryocooling [C]// Cryogenic Optical Systems and Instruments X SPIE , 2003: 68−76.
[11]   BAI L, LIN G, ZHANG H, et al Operating characteristics of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2012, 55 (25/26): 8093- 8099
doi: 10.1016/j.ijheatmasstransfer.2012.08.044
[12]   BAI L, LIN G, ZHANG H, et al Experimental study of a nitrogen-charged cryogenic loop heat pipe[J]. Cryogenics, 2012, 52 (10): 557- 563
doi: 10.1016/j.cryogenics.2012.07.005
[13]   DU C, BAI L, LIN G, et al Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP[J]. International Journal of Heat and Mass Transfer, 2013, 63: 454- 462
doi: 10.1016/j.ijheatmasstransfer.2013.03.079
[14]   GUO Y, LIN G, HE J, et al Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe[J]. Energy Conversion and Management, 2017, 134: 178- 187
doi: 10.1016/j.enconman.2016.12.038
[15]   HE J, GUO Y, ZHANG H, et al Design and experimental investigation of a neon cryogenic loop heat pipe[J]. Heat and Mass Transfer, 2017, 53 (11): 3229- 3239
[16]   GUO Y, LIN G, BAI L, et al Experimental study of the thermal performance of a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1266- 1274
doi: 10.1016/j.ijheatmasstransfer.2017.12.138
[17]   ZHAO Y, YAN T, LIANG J Experimental study on cooling down process of a nitrogen-charged cryogenic loop heat pipe[J]. Journal of Thermal Science, 2023, 32 (1): 153- 165
doi: 10.1007/s11630-022-1688-4
[18]   郭元东, 周强, 刘欣彤, 等 35 K深低温制冷与热传输集成系统研究[J]. 真空与低温, 2022, 28 (3): 353- 358
GUO Yuandong, ZHOU Qiang, LIU Xintong, et al Research on 35 K cryogenic refrigeration and heat transfer integrated system[J]. Vacuum and Cryogenics, 2022, 28 (3): 353- 358
doi: 10.3969/j.issn.1006-7086.2022.03.016
[19]   李强, 马路, 宣益民 低温环路热管(CLHP)的实验研究[J]. 工程热物理学报, 2010, 31 (1): 120- 123
LI Qiang, MA Lu, XUAN Yimin Experimental investigation of cryogenic loop heat pipe[J]. Journal of Engineering Thermophysics, 2010, 31 (1): 120- 123
[20]   GULLY P, YAN T. Thermal Management of a nitrogen cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2010: 1173−1180.
[21]   ZHAO Y, YAN T, LIANG J. Effect of shroud temperature on performance of a cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2012: 409−416.
[22]   GULLY P, QING M, SEYFERT P, et al. Nitrogen cryogenic loop heat pipe: results of a first prototype [J]. Cryocooler Integration Technologies , 2009: 525−531.
[23]   YAN T, ZHAO Y, LIANG J, et al Investigation on optimal working fluid inventory of a cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2013, 66: 334- 337
doi: 10.1016/j.ijheatmasstransfer.2013.07.043
[24]   ZHAO Y, YAN T, LI J, et al. Experimental study on the secondary evaporator of a cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2014: 20−27.
[25]   GUO Y, LIN G, ZHANG H, et al Investigation on thermal behaviours of a methane charged cryogenic loop heat pipe[J]. Energy, 2018, 157: 516- 525
doi: 10.1016/j.energy.2018.05.133
[26]   LEE J, KIM D, MUN J, et al Heat-transfer characteristics of a cryogenic loop heat pipe for space applications[J]. Energies, 2020, 13 (7): 1616
doi: 10.3390/en13071616
[27]   BAI L, LIN G, ZHANG H, et al Effect of component layout on the operation of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2013, 60: 61- 68
doi: 10.1016/j.ijheatmasstransfer.2013.01.011
[28]   ZHAO Y, YAN T, LIANG J Experimental study on a cryogenic loop heat pipe with high heat capacity[J]. International Journal of Heat and Mass Transfer, 2011, 54 (15/16): 3304- 3308
doi: 10.1016/j.ijheatmasstransfer.2011.03.056
[29]   CHO H, JIN L, JEONG S Experimental investigation on performances and characteristics of nitrogen-charged cryogenic loop heat pipe with wick-mounted condenser[J]. Cryogenics, 2020, 103: 1- 11
[30]   BUGBY D, MARLAND B, STOUFFER C, et al. Across-gimbal and miniaturized cryogenic loop heat pipes [C]// AIP Conference Proceedings . [s.l.]: AIP, 2003: 218−226.
[31]   GUO Y, LIN G, HE J, et al Experimental analysis of operation failure for a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 138: 96- 108
doi: 10.1016/j.ijheatmasstransfer.2019.04.045
[32]   GUO Y, LIN G, BAI L, et al Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J]. Energy Conversion and Management, 2016, 118: 353- 363
doi: 10.1016/j.enconman.2016.04.022
[33]   HE J, GUO Y, MIAO J, et al Pre-flight thermal performance test of a 35 K cryogenic integrated system[J]. International Journal of Refrigeration, 2019, 98: 372- 380
doi: 10.1016/j.ijrefrig.2018.11.020
[34]   GUO Y, ZHOU Q, LIU X, et al Co-designing cryogenic system with pulse tube cryocooler and loop heat pipe for infrared energy management[J]. Applied Thermal Engineering, 2021, 195: 117228
doi: 10.1016/j.applthermaleng.2021.117228
[35]   CHO H, JIN L, KIM S, et al Experimental validation of heat switch capability of cryogenic loop heat pipe[J]. Cryogenics, 2022, 121: 103403
doi: 10.1016/j.cryogenics.2021.103403
[36]   柏立战, 林贵平 深冷环路热管稳态运行特性的理论分析[J]. 航空动力学报, 2010, 25 (7): 1530- 1535
BAI Lizhan, LIN Guiping Theoretical analysis of steady-state operating characteristics of a cryogenic loop heat pipe[J]. Journal of Aerospace Power, 2010, 25 (7): 1530- 1535
[37]   DUNBAR N, CADELL P. Working fluids and figure of merit for CPL/LHP applications [C]// CPL-98 Workshop . El Segundo: The Aerospace Corporation, 1998.
[38]   JOUNG W, LEE J, LEE S, et al Derivation and validation of a figure of merit for loop heat pipes with medium temperature working fluids[J]. Journal of Heat Transfer, 2016, 138 (5): 052901
doi: 10.1115/1.4032534
[39]   GUO Y, LIN G, HE J, et al Supercritical startup strategy of cryogenic loop heat pipe with different working fluids[J]. Applied Thermal Engineering, 2019, 155: 267- 276
doi: 10.1016/j.applthermaleng.2019.04.008
[40]   CHERNYSHEVA M A, MAYDANIK Y F Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2008, 51 (17/18): 4204- 4215
doi: 10.1016/j.ijheatmasstransfer.2007.12.021
[41]   CHERNYSHEVA M A, MAYDANIK Y F, OCHTERBECK J M Heat transfer investigation in evaporator of loop heat pipe during startup[J]. Journal of Thermophysics and Heat Transfer, 2008, 22 (4): 617- 622
doi: 10.2514/1.35519
[42]   KAYA T, PÉREZ R, GREGORI C, et al Numerical simulation of transient operation of loop heat pipes[J]. Applied Thermal Engineering, 2008, 28 (28): 967- 974
[43]   LEMMON E, BELL I H, HUBER M, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 10.0, national institute of standards and technology [M]. Gaithersburg: NIST, 2018.
[44]   KU J. Operating characteristics of loop heat pipes [J]. SAE Transactions , 1999: 503−519.
[45]   王亦伟, 岑继文, 蒋方明, 等 充液量对回路热管性能的影响[J]. 光电子·激光, 2015, 26 (4): 676- 681
WANG Yiwei, CEN Jiwen, JIANG Fangming, et al The influence of filling ratio on the performance of loop heat pipe[J]. Journal of Optoelectronics·Laser, 2015, 26 (4): 676- 681
[46]   刘成, 吴亦农, 谢荣建, 等. 乙烷工质低温环路热管最佳充液率的研究[C]// 上海市制冷学会2017年学术年会. 上海: [s.n.], 2017: 112−117.
LIU Cheng, WU Yinong, XIE Rongjian, et al. Investigation on ideal filling ratio of an ethane charged cryogenic loop heat pipe [C]// 2017 Academic Annual Meeting of Shanghai Refrigeration Society . Shanghai: [s.n.], 2017: 112−117.
[47]   HE S, LIU Z, WANG D, et al Effect of different charge ratios on transient performance of a flat type of the LHP with a shared compensation chamber[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1075- 1081
doi: 10.1016/j.ijheatmasstransfer.2019.04.129
[48]   马宏, 王金波. 仪器精度理论 [M]. 北京: 北京航空航天大学出版社, 2009: 91−95.
[1] Jia-hua NI,Ji XIANG,Bo ZHAO. Spatial-domain dP/dV calculation based photovoltaic control method[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1450-1459.
[2] TONG Ji-jun, LI Lin, LIN Qin-guang, ZHU Dan-hua. SSVEP brain-computer interface (BCI) system using smoothed pseudo Wigner-Ville distribution[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 598-604.
[3] HU Xiang-dong,GUO Wang,ZHANG Luo-yu. Analytical solution of steady state temperature field of a few freezing pipes arranged near a right angle adiabatic boundary[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 471-477.
[4] ZHU Dan-hua, CHEN Da-jing, CHEN Yu-quan, PAN Min. Enhancement of steady-state visual evoked potentials using
parameter-tuned stochastic resonance
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 918-922.
[5] XUE Wen, JIN Wei-liang, YOKOTA Hiroshi. Chloride penetrating under co-effects of initial curing and
exposure conditions
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1416-1422.
[6] ZOU Tao, LI Hai-qiang. Two-layer predictive control of multi-variable system
with integrating element
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2079-2087.
[7] ZHANG Wei-yong, LI Ying, HUANG De-xian, YI Jia,ZHANG Zhi-yin, YANG Xiang-dang. Control of flue gas-air system for fired heaters
based on steady state model
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2093-2098.