Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1450-1459    DOI: 10.3785/j.issn.1008-973X.2023.07.020
    
Spatial-domain dP/dV calculation based photovoltaic control method
Jia-hua NI1(),Ji XIANG1,*(),Bo ZHAO2
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
Download: HTML     PDF(3176KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel approach was proposed to address the zero-denominator issue encountered in the current step calculation of dP/dV in order to eliminate steady-state oscillations in the output of photovoltaic (PV) system based on the perturbation and observation (P&O) method. dP/dV was calculated based on data from adjacent points in space, eliminating perturbation observation. The dP/dV value was directly used as the control variable. The zero-denominator issue was circumvented in the steady state, ensuring zero oscillation. The high-frequency signal updating feedback guaranteed a swift dynamic tracking process during dynamic states. The maximum power point tracking mode (dP/dV = 0) and the power standby mode (dP/dV < 0) were unified, achieving excellent output performance under various d P/dV reference values. Both Matlab/Simulink simulations and physical experiments were conducted. The superiority of the proposed algorithm in terms of maximum power tracking performance was demonstrated by comparing with traditional P&O algorithms and the latest MPPT algorithms. Further comparison with control methods based on time-domain dP/dV calculation showed the advantage of the proposed algorithm in power standby output performance.



Key wordsphotovoltaic (PV)      maximum power point tracking (MPPT)      power reserve      steady state oscillation     
Received: 08 July 2022      Published: 17 July 2023
CLC:  TM 91  
Fund:  国家自然科学基金资助项目(62173295)
Corresponding Authors: Ji XIANG     E-mail: nijiahua@zju.edu.cn;jxiang@zju.edu.cn
Cite this article:

Jia-hua NI,Ji XIANG,Bo ZHAO. Spatial-domain dP/dV calculation based photovoltaic control method. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1450-1459.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.020     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1450


基于空间域dP/dV计算的光伏控制方法

为了消除基于扰动观测方法下的光伏系统输出稳态振荡,针对当前步长计算中dP/dV存在的零分母问题,以空间上相邻的数据计算dP/dV,去掉扰动观测,直接以dP/dV作为控制变量. 在稳态下,避免了零分母问题,实现了稳态时无振荡;在动态下,高频的信号更新反馈保证了快速的动态跟踪过程. 统一了最大功率跟踪模式(dP/dV = 0)和功率热备模式(dP/dV < 0),可以在不同的d P/dV参考值下实现优秀的输出性能. 在Matlab/Simulink仿真和实物实验中,通过与传统P&O算法及最新MPPT算法的对比,证明了所提算法在最大功率跟踪性能上的优势;与基于时域dP/dV计算的控制方法对比,证明了所提算法在功率热备输出性能上的优势.


关键词: 光伏(PV),  最大功率跟踪(MPPT),  功率热备,  稳态振荡 
Fig.1 Curves of KC200GT modules under different temperature and solar irradiance
Fig.2 Spatial-domian dP/dV calculation based PV control scheme
Fig.3 Definition of spatial-domain
Fig.4 Flowchart of spatial-domain dP/dV calculation
Fig.5 Accuracy of dP/dV tracking with different δ
Fig.6 Celerity of dP/dv tracking with different δ
参数 参数值
电容C/μF 1 000
电感L/mH 3
开关频率 fs/kHz 20
电池电压 Vb/V 110
MPP处功率 Pmpp/W 1 601
MPP处电压 Vmpp/V 52.6
MPP 处电流 Impp/A 30.44
开路电压 Uoc/V 65.9
短路电流 Isc/A 32.8
Tab.1 PV System Parameters
Fig.7 PV output with different MPPT algorithms
Fig.8 Power reserved mode with different dP/dV calculation methods
Fig.9 PV generation experimental setup
Fig.10 Change curves of irradiance and temperature
Fig.11 PV behaviors with proposed spatial-domain dP/dv calculation method
Fig.12 PV behaviors with conventional P&O MPPT algorithm
Fig.13 PV behaviors with SOFT-MPPT algorithm
Fig.14 PV output of time-domain dP/dV calculation based control method under different dP/dV references
Fig.15 PV output of spatial-domain dP/dV calculation based control method under different dP/dV references
[1]   苗青青, 石春艳, 张香平 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41 (3): 1125- 1131
MIAO Qing-qing, SHI Chun-yan, ZHANG Xiang-ping Photovoltaic technology under carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41 (3): 1125- 1131
doi: 10.16085/j.issn.1000-6613.2021-2500
[2]   TAFTI H D, KONSTANTINOU G, TOWNSEND C D, et al Extended functionalities of photovoltaic systems with flexible power point tracking: recent advances[J]. IEEE Transactions on Power Electronics, 2020, 35 (9): 9342- 9356
doi: 10.1109/TPEL.2020.2970447
[3]   BOLLIPO R B, MIKKILI S, BONTHAGORLA P K Critical review on PV MPPT techniques: classical, intelligent and optimisation[J]. IET Renewable Power Generation, 2020, 14 (9): 1433- 1452
doi: 10.1049/iet-rpg.2019.1163
[4]   刘中建, 周明, 李昭辉, 等 高比例新能源电力系统的惯量控制技术与惯量需求评估综述[J]. 电力自动化设备, 2021, 41 (12): 1- 11
LIU Zhong-jian, ZHOU Ming, LI Zhao-hui, et al Review of inertia control technology and requirement evaluation in renewable-dominant power system[J]. Electric Power Automation Equipment, 2021, 41 (12): 1- 11
doi: 10.16081/j.epae.202107030
[5]   焦晓红, 王鲁浩 风光混合发电系统的功率协调控制[J]. 电机与控制学报, 2013, 17 (6): 82- 88
JIAO Xiao-hong, WANG Lu-hao Coordinated control of power for hybrid wind-PV generation system[J]. Electric Machines and Control, 2013, 17 (6): 82- 88
doi: 10.3969/j.issn.1007-449X.2013.06.013
[6]   钟庆, 石泉, 王钢, 等 基于扰动式MPPT控制的光伏并网系统间谐波分析模型[J]. 中国电机工程学报, 2018, 38 (22): 6533- 6542
ZHONG Qing, SHI Quan, WANG Gang, et al Interharmonic analysis model of photovoltaic grid-connected system based on perturbed MPPT control[J]. Proceedings of the CSEE, 2018, 38 (22): 6533- 6542
doi: 10.13334/j.0258-8013.pcsee.180020
[7]   XIA Y, YU M, YANG P, et al Generation-storage coordination for islanded DC microgrids dominated by PV generators[J]. IEEE Transactions on Energy Conversion, 2019, 34 (1): 130- 138
doi: 10.1109/TEC.2018.2860247
[8]   POKHAREL M, GHOSH A, HO C N M Small-signal modelling and design validation of PV-controllers with INC-MPPT using CHIL[J]. IEEE Transactions on Energy Conversion, 2019, 34 (1): 361- 371
doi: 10.1109/TEC.2018.2874563
[9]   卫东, 王央康, 常亚文 一种基于增量电导法的变步长MPPT算法[J]. 太阳能学报, 2018, 39 (5): 1277- 1283
WEI Dong, WANG Yang-kang, CHANG Ya-wen A variable step-size MPPT algorithm based on incremental conductance method[J]. Acta Energiae Solaris Sinica, 2018, 39 (5): 1277- 1283
[10]   LIU F F, DUAN S, LIU F F, et al A variable step size INC MPPT method for PV systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (7): 2622- 2628
doi: 10.1109/TIE.2008.920550
[11]   FATHABADI H Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking[J]. Energy, 2016, 94: 466- 475
doi: 10.1016/j.energy.2015.10.133
[12]   ZHOU D B, CHEN Y R Maximum power point tracking strategy based on modified variable step-size incremental conductance algorithm[J]. Power System Technology, 2015, 39 (6): 1491- 1498
[13]   TAFTI H D, SANGWONGWANICH A, YANG Y, et al An adaptive control scheme for flexible power point tracking in photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2019, 34 (6): 5451- 5463
doi: 10.1109/TPEL.2018.2869172
[14]   李向丽, 闫朝阳, 高燕妮, 等 光伏系统稳态无振荡扰动观察MPPT研究[J]. 太阳能学报, 2016, 37 (12): 3014- 3021
LI Xiang-li, YAN Chao-yang, GAO Yan-ni, et al Research of steady state without oscillation in perturband observe maximum power point tracking of PV system[J]. Acta Energiae Solaris Sinica, 2016, 37 (12): 3014- 3021
[15]   BHATTACHARYYA S, KUMAR P D S, SAMANTA S, et al Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and INC algorithms[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (1): 293- 302
doi: 10.1109/TSTE.2020.2991768
[16]   CAI H, XIANG J, WEI W, et al V-dP/dv droop control for PV sources in DC microgrids [J]. IEEE Transactions on Power Electronics, 2018, 33 (9): 7708- 7720
doi: 10.1109/TPEL.2017.2771803
[17]   VILLALVA M G, GAZOLI J R, FILHO E R Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE Transactions on Power Electronics, 2009, 24 (5): 1198- 1208
doi: 10.1109/TPEL.2009.2013862
[18]   MAHMOUD Y, EL-SAADANY E Accuracy improvement of the ideal PV model[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (3): 909- 911
doi: 10.1109/TSTE.2015.2412694
[19]   DING K, BIAN X, LIU H, et al A MATLAB-simulink-based PV module model and its application under conditions of nonuniform irradiance[J]. IEEE Transactions on Energy Conversion, 2012, 27 (4): 864- 872
doi: 10.1109/TEC.2012.2216529
[1] ZHANG Dan-Yan, TUN Xiao-Bei, DIAO Meng-Lian, et al. Integrated circuit design for solar cell maximum power point tracking[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(11): 2000-2005.