|
|
Spatial-domain dP/dV calculation based photovoltaic control method |
Jia-hua NI1(),Ji XIANG1,*(),Bo ZHAO2 |
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China 2. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China |
|
|
Abstract A novel approach was proposed to address the zero-denominator issue encountered in the current step calculation of dP/dV in order to eliminate steady-state oscillations in the output of photovoltaic (PV) system based on the perturbation and observation (P&O) method. dP/dV was calculated based on data from adjacent points in space, eliminating perturbation observation. The dP/dV value was directly used as the control variable. The zero-denominator issue was circumvented in the steady state, ensuring zero oscillation. The high-frequency signal updating feedback guaranteed a swift dynamic tracking process during dynamic states. The maximum power point tracking mode (dP/dV = 0) and the power standby mode (dP/dV < 0) were unified, achieving excellent output performance under various d P/dV reference values. Both Matlab/Simulink simulations and physical experiments were conducted. The superiority of the proposed algorithm in terms of maximum power tracking performance was demonstrated by comparing with traditional P&O algorithms and the latest MPPT algorithms. Further comparison with control methods based on time-domain dP/dV calculation showed the advantage of the proposed algorithm in power standby output performance.
|
Received: 08 July 2022
Published: 17 July 2023
|
|
Fund: 国家自然科学基金资助项目(62173295) |
Corresponding Authors:
Ji XIANG
E-mail: nijiahua@zju.edu.cn;jxiang@zju.edu.cn
|
基于空间域dP/dV计算的光伏控制方法
为了消除基于扰动观测方法下的光伏系统输出稳态振荡,针对当前步长计算中dP/dV存在的零分母问题,以空间上相邻的数据计算dP/dV,去掉扰动观测,直接以dP/dV作为控制变量. 在稳态下,避免了零分母问题,实现了稳态时无振荡;在动态下,高频的信号更新反馈保证了快速的动态跟踪过程. 统一了最大功率跟踪模式(dP/dV = 0)和功率热备模式(dP/dV < 0),可以在不同的d P/dV参考值下实现优秀的输出性能. 在Matlab/Simulink仿真和实物实验中,通过与传统P&O算法及最新MPPT算法的对比,证明了所提算法在最大功率跟踪性能上的优势;与基于时域dP/dV计算的控制方法对比,证明了所提算法在功率热备输出性能上的优势.
关键词:
光伏(PV),
最大功率跟踪(MPPT),
功率热备,
稳态振荡
|
|
[1] |
苗青青, 石春艳, 张香平 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41 (3): 1125- 1131 MIAO Qing-qing, SHI Chun-yan, ZHANG Xiang-ping Photovoltaic technology under carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41 (3): 1125- 1131
doi: 10.16085/j.issn.1000-6613.2021-2500
|
|
|
[2] |
TAFTI H D, KONSTANTINOU G, TOWNSEND C D, et al Extended functionalities of photovoltaic systems with flexible power point tracking: recent advances[J]. IEEE Transactions on Power Electronics, 2020, 35 (9): 9342- 9356
doi: 10.1109/TPEL.2020.2970447
|
|
|
[3] |
BOLLIPO R B, MIKKILI S, BONTHAGORLA P K Critical review on PV MPPT techniques: classical, intelligent and optimisation[J]. IET Renewable Power Generation, 2020, 14 (9): 1433- 1452
doi: 10.1049/iet-rpg.2019.1163
|
|
|
[4] |
刘中建, 周明, 李昭辉, 等 高比例新能源电力系统的惯量控制技术与惯量需求评估综述[J]. 电力自动化设备, 2021, 41 (12): 1- 11 LIU Zhong-jian, ZHOU Ming, LI Zhao-hui, et al Review of inertia control technology and requirement evaluation in renewable-dominant power system[J]. Electric Power Automation Equipment, 2021, 41 (12): 1- 11
doi: 10.16081/j.epae.202107030
|
|
|
[5] |
焦晓红, 王鲁浩 风光混合发电系统的功率协调控制[J]. 电机与控制学报, 2013, 17 (6): 82- 88 JIAO Xiao-hong, WANG Lu-hao Coordinated control of power for hybrid wind-PV generation system[J]. Electric Machines and Control, 2013, 17 (6): 82- 88
doi: 10.3969/j.issn.1007-449X.2013.06.013
|
|
|
[6] |
钟庆, 石泉, 王钢, 等 基于扰动式MPPT控制的光伏并网系统间谐波分析模型[J]. 中国电机工程学报, 2018, 38 (22): 6533- 6542 ZHONG Qing, SHI Quan, WANG Gang, et al Interharmonic analysis model of photovoltaic grid-connected system based on perturbed MPPT control[J]. Proceedings of the CSEE, 2018, 38 (22): 6533- 6542
doi: 10.13334/j.0258-8013.pcsee.180020
|
|
|
[7] |
XIA Y, YU M, YANG P, et al Generation-storage coordination for islanded DC microgrids dominated by PV generators[J]. IEEE Transactions on Energy Conversion, 2019, 34 (1): 130- 138
doi: 10.1109/TEC.2018.2860247
|
|
|
[8] |
POKHAREL M, GHOSH A, HO C N M Small-signal modelling and design validation of PV-controllers with INC-MPPT using CHIL[J]. IEEE Transactions on Energy Conversion, 2019, 34 (1): 361- 371
doi: 10.1109/TEC.2018.2874563
|
|
|
[9] |
卫东, 王央康, 常亚文 一种基于增量电导法的变步长MPPT算法[J]. 太阳能学报, 2018, 39 (5): 1277- 1283 WEI Dong, WANG Yang-kang, CHANG Ya-wen A variable step-size MPPT algorithm based on incremental conductance method[J]. Acta Energiae Solaris Sinica, 2018, 39 (5): 1277- 1283
|
|
|
[10] |
LIU F F, DUAN S, LIU F F, et al A variable step size INC MPPT method for PV systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (7): 2622- 2628
doi: 10.1109/TIE.2008.920550
|
|
|
[11] |
FATHABADI H Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking[J]. Energy, 2016, 94: 466- 475
doi: 10.1016/j.energy.2015.10.133
|
|
|
[12] |
ZHOU D B, CHEN Y R Maximum power point tracking strategy based on modified variable step-size incremental conductance algorithm[J]. Power System Technology, 2015, 39 (6): 1491- 1498
|
|
|
[13] |
TAFTI H D, SANGWONGWANICH A, YANG Y, et al An adaptive control scheme for flexible power point tracking in photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2019, 34 (6): 5451- 5463
doi: 10.1109/TPEL.2018.2869172
|
|
|
[14] |
李向丽, 闫朝阳, 高燕妮, 等 光伏系统稳态无振荡扰动观察MPPT研究[J]. 太阳能学报, 2016, 37 (12): 3014- 3021 LI Xiang-li, YAN Chao-yang, GAO Yan-ni, et al Research of steady state without oscillation in perturband observe maximum power point tracking of PV system[J]. Acta Energiae Solaris Sinica, 2016, 37 (12): 3014- 3021
|
|
|
[15] |
BHATTACHARYYA S, KUMAR P D S, SAMANTA S, et al Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and INC algorithms[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (1): 293- 302
doi: 10.1109/TSTE.2020.2991768
|
|
|
[16] |
CAI H, XIANG J, WEI W, et al V-dP/dv droop control for PV sources in DC microgrids [J]. IEEE Transactions on Power Electronics, 2018, 33 (9): 7708- 7720
doi: 10.1109/TPEL.2017.2771803
|
|
|
[17] |
VILLALVA M G, GAZOLI J R, FILHO E R Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE Transactions on Power Electronics, 2009, 24 (5): 1198- 1208
doi: 10.1109/TPEL.2009.2013862
|
|
|
[18] |
MAHMOUD Y, EL-SAADANY E Accuracy improvement of the ideal PV model[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (3): 909- 911
doi: 10.1109/TSTE.2015.2412694
|
|
|
[19] |
DING K, BIAN X, LIU H, et al A MATLAB-simulink-based PV module model and its application under conditions of nonuniform irradiance[J]. IEEE Transactions on Energy Conversion, 2012, 27 (4): 864- 872
doi: 10.1109/TEC.2012.2216529
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|