Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 611-621    DOI: 10.3785/j.issn.1008-973X.2024.03.018
    
Extended sliding mode observer-based robust tracking control scheme for electro-hydraulic servo systems
Wanshun ZANG1,2(),Gang SHEN3,*(),Jun ZHAO4,Kejiang ZANG5
1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China
2. The Coal Mine Safety Mining Equipment Innovation Center of Anhui Province, Anhui University of Science and Technology, Huainan 232001, China
3. School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China
4. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
5. School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, China
Download: HTML     PDF(2416KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A state-space model was constructed by considering system uncertainties such as external disturbances, friction force, parameter uncertainties, structural vibrations as well as unmodeled characteristics, in order to improve the control performance of electro-hydraulic servo systems (EHSSs). A novel extended sliding mode observer (ESMO) was proposed to simultaneously estimate the system full-state and the system uncertainties, in order to address the system uncertainties. The ESMO was optimized using the equivalent injection principle and proper saturation functions. The estimated value of the system uncertainties was then utilized in the design of the backstepping control architecture, where a barrier Lyapunov function (BLF) was introduced to constrain the tracking error within a desired certain range. In addition, parameter adaptation laws were incorporated to enhance the control performance of the system. A simulation model was established in the MATLAB/Simulink software, to validate the performance of the proposed control methodology. What's more, an experimental setup of the EHSS was implemented, and some real-time control experiments were conducted. The results from both simulation and experiment demonstrate that the proposed methodology outperforms the BLF-based backstepping controller and the traditional backstepping controller.



Key wordselectro-hydraulic servo system      system uncertainty      extended sliding mode observer      parameter adaption      barrier Lyapunov function      backstepping control     
Received: 09 March 2023      Published: 05 March 2024
CLC:  TH 137.9  
  TP 271+.4  
Fund:  山东自然科学基金资助项目(ZR2021QE107,ZR2022QF011);国家自然科学基金资助项目(U21A20125,62203279);安徽省煤矿安全采掘装备制造业创新中心开放课题基金资助项目(CMSMEICAP2023007);江苏省自然科学基金杰出青年基金资助项目(BK20200029);福建省科技厅引导性资助项目(2020Y0088);龙岩市科技计划重点资助项目(2020LYF9002);龙岩学院科学研究启动基金资助项目(LB2018035);山西省揭榜招标项目(20201101010).
Corresponding Authors: Gang SHEN     E-mail: wanshunzang@163.com;shenganghit@163.com
Cite this article:

Wanshun ZANG,Gang SHEN,Jun ZHAO,Kejiang ZANG. Extended sliding mode observer-based robust tracking control scheme for electro-hydraulic servo systems. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 611-621.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/611


基于扩张滑模观测器的电液伺服系统鲁棒控制

为了提高电液伺服系统(EHSSs)控制性能,考虑外部干扰力、摩擦力、参数变动、结构振动及未建模特性等系统不确定性,构建系统状态空间模型. 为了应对系统不确定性,提出新型扩张滑模观测器(ESMO),用于同时估计系统全状态和系统不确定性,并结合等值注入原理及饱和函数进行合理优化. 利用系统不确定性的估计值,在反步控制设计中引入障碍Lyapunov函数,将系统的跟踪误差约束在一定范围内,结合参数自适应律,提高系统控制性能. 为了验证所提控制方法的性能,在MATLAB/Simulink软件平台构建仿真模型,进一步地,搭建电液伺服系统实验台及实时控制系统,进行仿真和实验验证. 结果表明所提方法的性能优于基于障碍Lyapunov函数的反步控制器及传统的反步控制器.


关键词: 电液伺服系统,  系统不确定性,  扩张滑模观测器,  参数自适应,  障碍Lyapunov函数,  反步控制 
Fig.1 Schematic diagram of servo valve controlled hydraulic cylinder
Fig.2 Overall architecture of closed-loop control system
参数 / 单位数值
Ap / m21.88×10?3
βe / Pa6.9×108
ΔPr / Pa6×106
Ps / Pa8×106
Bp/(N·m?1·s)7500
m / kg500
Vt / m30.38×10?3
umax / V10
$q_{V_{\mathrm{r}}} $/ (L·min?1)38
Ctl / (m3·s?1·Pa?1)4.6×10?16
Tab.1 Key parameters of electro-hydraulic servo system
Fig.3 Performance of backstepping controller in simulation study
Fig.4 Performance of barrier Lyapunov function-based backstepping controller in simulation study
Fig.5 Performance of proposed controller in simulation study
Fig.6 Experimental bench for electro-hydraulic servo systems
Fig.7 Real control system of experimental bench
Fig.8 Performance of backstepping controller in experimental study
Fig.9 Performance of barrier Lyapunov function-based backstepping controller in experimental study
Fig.10 Performance of proposed controller in experimental study
[1]   姚文龙, 亓冠华, 池荣虎, 等 不确定受扰电液伺服系统智能自学习PID控制[J]. 控制与决策, 2023, 38 (3): 654- 660
YAO Wenlong, QI Guanhua, CHI Ronghu, et al Intelligent self-learning PID control of electro-hydraulic servo system with uncertain disturbances[J]. Control and Decision, 2023, 38 (3): 654- 660
doi: 10.13195/j.kzyjc.2021.1001
[2]   焦宗夏, 姚建勇. 电液伺服系统非线性控制[M]. 北京: 科学出版社, 2016: 110−153.
[3]   ZHU Q, HUANG D, YU B, et al An improved method combined SMC and MLESO for impedance control of legged robots’ electro-hydraulic servo system[J]. ISA Transactions, 2022, 130: 598- 609
doi: 10.1016/j.isatra.2022.03.009
[4]   ZHAO J, SHEN G, ZHU W, et al Robust force control with a feed-forward inverse model controller for electro-hydraulic control loading systems of flight simulators[J]. Mechatronics, 2016, 38: 42- 53
doi: 10.1016/j.mechatronics.2016.06.004
[5]   SHEN G, ZHU Z, LI X, et al Real-time electro-hydraulic hybrid system for structural testing subjected to vibration and force loading[J]. Mechatronics, 2016, 33: 49- 70
doi: 10.1016/j.mechatronics.2015.10.009
[6]   FENG H, MA W, YIN C, et al Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller[J]. Automation in Construction, 2021, 127: 103722
doi: 10.1016/j.autcon.2021.103722
[7]   王鑫刚, 芮光超, 丁兴亚, 等 基于干扰观测器的电液伺服系统反馈线性化滑模控制[J]. 液压与气动, 2018, 6: 8- 13
WANG Xingang, RUI Guangchao, DING Xingya, et al Feedback linearization sliding mode control based on disturbance observer for electro-hydraulic servo system[J]. Chinese Hydraulics and Pneumatics, 2018, 6: 8- 13
doi: 10.11832/j.issn.1000-4858.2018.07.002
[8]   YAO B, BU F, REEDY J, et al Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5 (1): 79- 91
doi: 10.1109/3516.828592
[9]   梅鲁海, 刘哲纬 基于开环补偿与鲁棒控制的电液位置伺服加载系统研究[J]. 机电工程, 2022, 39 (1): 59- 64
MEI Luhai, LIU Zhewei Electro-hydraulic position servo loading system based on open loop compensation and robust control[J]. Journal of Mechanical and Electrical Engineering, 2022, 39 (1): 59- 64
doi: 10.3969/j.issn.1001-4551.2022.01.009
[10]   FENG H, SONG Q, MA S, et al A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system[J]. ISA Transactions, 2022, 129: 472- 484
doi: 10.1016/j.isatra.2021.12.044
[11]   YANG G Dual extended state observer-based backstepping control of electro-hydraulic servo systems with time-varying output constraints[J]. Transactions of the Institute of Measurement and Control, 2020, 42 (5): 1070- 1080
doi: 10.1177/0142331219883056
[12]   DING X, SHEN G, LI X, et al. Delay compensation position tracking control of electro-hydraulic servo systems based on a delay observer [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering , 2020, 234(5): 622−633.
[13]   董振乐, 杨英浩, 姚建勇, 等 匹配和不匹配干扰共存时电液伺服系统预设性能渐近跟踪控制[J]. 中国机械工程, 2022, 33 (20): 2437- 2443
DONG Lezhen, YANG Yinghao, YAO Jianyong, et al Asymptotic prescribed performance tracking control of electro-hydraulic servo systems under matched and unmatched disturbances[J]. China Mechanical Engineering, 2022, 33 (20): 2437- 2443
[14]   WON D, KIM W, SHIN D, et al High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems[J]. IEEE Transactions on Control Systems Technology, 2014, 23 (2): 787- 795
[15]   GINOYA D, SHENDGE P D, PHADKE S B Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 26 (1−3): 98- 107
doi: 10.1016/j.cnsns.2015.02.008
[16]   王云飞, 赵继云, 曹超 基于双干扰观测器的非对称缸电液系统位置控制[J]. 中南大学学报:自然科学版, 2021, 52 (11): 3864- 3871
WANG Yunfei, ZHAO Jiyun, CAO Chao Position control of asymmetric cylinder electro-hydraulic system based on dual disturbance observer[J]. Journal of Central South University: Science and Technology, 2021, 52 (11): 3864- 3871
[17]   YAO J, JIAO Z, MA D Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (11): 6285- 6293
doi: 10.1109/TIE.2014.2304912
[18]   GUO Q, ZHANG Y, CELLER B, et al Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (11): 6909- 6920
doi: 10.1109/TIE.2016.2585080
[19]   WON D, KIM W, TOMIZUKA M Nonlinear control with high-gain extended state observer for position tracking of electro-hydraulic systems[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25 (6): 2610- 2621
doi: 10.1109/TMECH.2020.2985619
[20]   QIAO Z, SHI T, WANG Y, et al New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2012, 60 (2): 710- 719
[21]   XIE W F Sliding-mode-observer-based adaptive control for servo actuator with friction[J]. IEEE Transactions on Industrial Electronics, 2007, 54 (3): 1517- 1527
doi: 10.1109/TIE.2007.894718
[22]   ZHANG J, SHI P, LIN W Extended sliding mode observer based control for Markovian jump linear systems with disturbances[J]. Automatica, 2016, 70: 140- 147
doi: 10.1016/j.automatica.2016.03.020
[23]   ZHANG X, LI Z Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor[J]. IEEE Transactions on Power Electronics, 2015, 31 (8): 5732- 5745
[24]   KIM H W, KWON Y W, PARK S M, et al. Parameter estimation of SPMSM using adaptive filter and extended sliding-mode observer [C]// 2019 IEEE 15th International Conference on Control and Automation . [s.l.]: IEEE, 2019: 702-707.
[25]   ZANG W, ZHANG Q, SHEN G, et al Extended sliding mode observer based robust adaptive backstepping controller for electro-hydraulic servo system: theory and experiment[J]. Mechatronics, 2022, 85: 102841
doi: 10.1016/j.mechatronics.2022.102841
[26]   DAO H V, AHN K K Extended sliding mode observer-based admittance control for hydraulic robots[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 3992- 3999
doi: 10.1109/LRA.2022.3147244
[1] Jia-cheng SONG,Mao-de YAN,Pan-pan YANG,Yong-feng JU,Jing-fei YUE. Robust backstepping adaptive cruise control based on data-driven[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 485-493.
[2] Chi LEI,Meng-ling WU. Backstepping based precise control of brake cylinder pressure for train[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 462-471.
[3] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1111-1118.
[4] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 1-.
[5] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1758-1766.
[6] ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1397-1406.
[7] TANG Zhi-Guo, LI Yuan-Chun, LIU Mu-Lin. Robust neural network control of dual-manipulator cooperative
system handling flexible payload
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1394-1399.