Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 570-578    DOI: 10.3785/j.issn.1008-973X.2024.03.014
    
Experimental investigation on pile-soil interaction of monopile under multidirectional load in soft foundation
Puxiu DAI1(),Kaifu LIU2,*(),Xinyu XIE1,3,Yuedong XU2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
3. Institute of Wenzhou, Zhejiang University, Wenzhou 325035, China
Download: HTML     PDF(3751KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A 1g large-scale model test was carried out, in order to further study the lateral deformation response and pile-soil interaction mechanism of large-diameter monopile under multidirectional cyclic load. The lateral stress and the deformation response of the pile under different vertical and lateral cyclic load ratios were discussed. Test results showed that applying vertical cyclic loads would increase the development rate of lateral displacement of the monopile. The maximum bending moment appeared at the depth of 2.0 times the pile diameter, and the bending moment of the pile body showed a decreasing trend with the increase of the number of cycles. The position of the maximum soil resistance gradually moved from 1.5 times the pile diameter depth to 2.0 times the pile diameter depth under cyclic load, and the degradation of cyclic soil resistance-pile lateral deformation (p-y) curve mainly occured in the surface soil. Applying vertical cyclic load would increase the initial stiffness of the pile-soil interface, but it would also accelerate the stiffness degradation of the pile-soil system. Special attention should be paid to the adverse effects of vertical cyclic load on pile displacement and pile-soil interaction under long-term cyclic load in the design of large-diameter monopile for offshore wind turbines.



Key words1g model test      monopile      complex loading      p-y curve      pile-soil interaction     
Received: 01 March 2023      Published: 05 March 2024
CLC:  TU 43  
Fund:  国家自然科学基金资助项目(52078465);浙江省公益技术应用研究资助项目(LGG22E080015).
Corresponding Authors: Kaifu LIU     E-mail: daipuxiu@zju.edu.cn;liukaifu@zstu.edu.cn
Cite this article:

Puxiu DAI,Kaifu LIU,Xinyu XIE,Yuedong XU. Experimental investigation on pile-soil interaction of monopile under multidirectional load in soft foundation. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 570-578.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.014     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/570


软基中多向受荷大直径单桩桩土相互作用试验研究

为了研究多向循环受荷大直径单桩的水平变形响应及桩土相互作用机理,开展多向受荷大直径单桩的1g大比尺模型试验,探讨不同竖向和水平循环荷载比下的桩侧受力及变形响应. 试验结果表明,施加竖向循环荷载会增大桩身水平位移的发展速率;最大弯矩出现在2.0倍桩径深度处,随着循环次数的增大,桩身弯矩表现出减小的趋势;在循环荷载作用下,最大土抗力所在的位置随着循环次数的增大逐渐从1.5倍桩径深度处向2.0倍桩径深度处移动,循环土体抗力-桩身水平变形(p-y)曲线的退化主要发生在表层土体;施加竖向循环荷载会增大桩土界面的初始刚度,但同时也会加速桩土体系的刚度退化. 建议在海上风电大直径单桩的设计中,特别注意竖向循环荷载对长期循环荷载作用下桩身位移及桩土相互作用的不利影响.


关键词: 1g模型试验,  大直径单桩,  复杂荷载,  p-y曲线,  桩土相互作用 
土体类型w/%$ \gamma $/(kN·m?3)e$ c $/kPa$ \varphi $/(°)$ {w_{\text{L}}} $/%$ {w_{\text{P}}} $/%$ {I_{\text{L}}} $$ {I_{\text{P}}} $
粉砂11.017.50.7133.0
淤泥质黏土44.018.61.1311.427.445.124.60.9520.5
Tab.1 Physical parameters of test soil
Fig.1 Curve of undrained shear strength of muddy clay with depth
Fig.2 Geotechnical disaster simulation system
Fig.3 Arrangement and test of model pile
Fig.4 Arrangement of static and multi-directional cyclic loading model tests
Fig.5 Schematic diagram of cyclic load
荷载类别试验编号$ \mu $$ \eta $$ \lambda $N
静力S1
S2
循环C1-10.300.210000
C1-20.300.310000
C1-30.300.410000
C2-10.30.10.210000
C2-20.30.10.310000
C2-30.30.10.410000
Tab.2 Test program of static and multi-directional cyclic loading
Fig.6 Load-displacement curves of cyclic tests
Fig.7 Displacement curve of cyclic tests
Fig.8 Normalized displacement curve of cyclic tests
Fig.9 Moment distribution curve of pile under different cycle numbers
Fig.10 Comparative analysis of pile bending moment under different cyclic loading ratios(N=10000)
Fig.11 Normalized analysis of maximum bending moment
Fig.12 Distribution of soil resistance under different cycle numbers
Fig.13 Comparative analysis of soil resistance under different cyclic loading ratios(N=10000)
Fig.14 Cyclic p-y curves at depth of 2.0D ($ \lambda $=0.2)
Fig.15 Comparison of measured peak values of static p-y curves and cyclic p-y curves with API recommended value at different depths
[1]   RAMIREZ L, FRAILE D, BRINDLEY G. Offshore wind in Europe: key trends and statistics 2020 [R]. Brussels: Springfield, 2021.
[2]   MCCLELLAND B, FOCHT J Soil modulus for laterally loaded piles[J]. Transactions of the American Society of Civil Engineers, 1958, 123 (1): 1049- 1063
doi: 10.1061/TACEAT.0007599
[3]   MATLOCK H. Correlation for design of laterally loaded piles in soft clay [C]// Offshore Technology Conference . Houston: OnePetro, 1970.
[4]   REESE L C, COX W R, KOOP F D. Analysis of laterally loaded piles in sand [C]// Offshore Technology Conference . Houston: OnePetro, 1974.
[5]   REESE L C, COX W R, KOOP F D. Field testing and analysis of laterally loaded piles om stiff clay [C]// Offshore Technology Conference . Houston: OnePetro, 1975.
[6]   API. API 2A-WSD: recommended practice for planning, designing and constructing fixed offshore platforms-working stress design [M]. Washington: American Petroleum Institute, 2000.
[7]   DNV. Design of offshore wind turbine structure: DNV-OS-J101 [M]. Veritasveien: Det Norske Veritas, 2004.
[8]   朱斌, 朱瑞燕, 罗军, 等 海洋高桩基础水平大变位性状模型试验研究[J]. 岩土工程学报, 2010, 32 (4): 521- 530
ZHU Bin, ZHU Ruiyan, LUO Jun, et al Model tests on characteristics of ocean and offshore elevated piles with large lateral deflection[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (4): 521- 530
[9]   朱斌, 熊根, 刘晋超, 等 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35 (10): 1807- 1815
ZHU Bin, XIONG Gen, LIU Jinchao, et al Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (10): 1807- 1815
[10]   JEANJEAN P. Re-assessment of py curves for soft clays from centrifuge testing and finite element modeling [C]// Offshore Technology Conference . Houston: OnePetro, 2009.
[11]   ZHU B, ZHU Z, LI T, et al Field tests of offshore driven piles subjected to lateral monotonic and cyclic loads in soft clay[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2017, 143 (5): 05017003
doi: 10.1061/(ASCE)WW.1943-5460.0000399
[12]   LIAO W, ZHANG J, WU J, et al Response of flexible monopile in marine clay under cyclic lateral load[J]. Ocean Engineering, 2018, 147: 89- 106
doi: 10.1016/j.oceaneng.2017.10.022
[13]   龚维明, 霍少磊, 杨超, 等 海上风机大直径钢管桩基础水平承载特性试验研究[J]. 水利学报, 2015, 46 (Suppl.1): 34- 39
GONG Weiming, HUO Shaolei, YANG Chao, et al Experimental study on horizontal bearing capacity of large diameter steel pipe pile for offshore wind farm[J]. Journal of Hydraulic Engineering, 2015, 46 (Suppl.1): 34- 39
[14]   TAK KIM B, KIM N K, JIN LEE W, et al Experimental load–transfer curves of laterally loaded piles in Nak-Dong River sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 (4): 416- 425
doi: 10.1061/(ASCE)1090-0241(2004)130:4(416)
[15]   PENDER M J, CARTER D P, PRANJOTO S Diameter effects on pile head lateral stiffness and site investigation requirements for pile foundation design[J]. Journal of Earthquake Engineering, 2007, 11 (Suppl.1): 1- 12
[16]   KALLEHAVE D, THILSTED C L B, LIINGAARD M A. Modification of the API py formulation of initial stiffness of sand [C]// Offshore Site Investigation and Geotechnics: Integrated Technologies-Present and Future . Houston: OnePetro, 2012.
[17]   何奔, 王欢, 洪义, 等 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报:工学版, 2016, 50 (7): 1221- 1229
HE Ben, WANG Huan, HONG Yi, et al Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (7): 1221- 1229
[18]   LIU T, LAI Y, HE B, et al Influence of vertical load on the lateral response of piles in normally consolidated and over-consolidated clay: centrifuge and numerical modelling[J]. Frontiers in Physics, 2022, (10): 487- 499
[19]   胡安峰, 肖志荣, 江进华, 等 双向循环荷载下的单桩基础累积侧向位移[J]. 上海交通大学学报, 2020, 54 (1): 85- 91
HU Anfeng, XIAO Zhirong, JIANG Jinhua, et al Cumulative lateral displacement of single pile foundation under lateral and vertical cyclic loadings[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (1): 85- 91
[20]   DÜHRKOP J, GRABE J Monopilegründungen von Offshore-Windenergieanlagen-Zum Einfluss einer veränderlichen zyklischen Lastangriffsrichtung[J]. Bautechnik, 2008, 85 (5): 317- 321
doi: 10.1002/bate.200810024
[21]   RUDOLPH C, GRABE J Untersuchungen zu zyklisch horizontal belasteten Pfählen bei veränderlicher Lastrichtung[J]. Geotechnik, 2013, 36 (2): 90- 95
doi: 10.1002/gete.201200025
[22]   RICHARDS I A, BYRNE B W, HOULSBY G T Monopile rotation under complex cyclic lateral loading in sand[J]. Géotechnique, 2020, 70 (10): 916- 930
[23]   NANDA S, ARTHUR I, SIVAKUMAR V, et al Monopiles subjected to uni-and multi-lateral cyclic loading[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2017, 170 (3): 246- 258
doi: 10.1680/jgeen.16.00110
[24]   中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019: 5.
[25]   RAO S N, RAMAKRISHNA V, RAO M B Influence of rigidity on laterally loaded pile groups in marine clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (6): 542- 549
doi: 10.1061/(ASCE)1090-0241(1998)124:6(542)
[26]   POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering [C]// Foundation Engineering: Current Principles and Practices . Reston: ASCE, 1989.
[27]   中华人民共和国交通运输部. 港口工程桩基规范: JTS 167—4[S]. 北京: 中国建筑工业出版社, 2012: 7.
[28]   CUÉLLAR P. Pile foundations for offshore wind turbines: numerical and experimental investigations on the behaviour under short-term and long-term cyclic loading [D]. Berlin: Technischen Universität Berlin, 2011.
[29]   LEBLANC C, HOULSBY G T, BYRNE B W Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60 (2): 79- 90
[30]   俞剑, 黄茂松, 张陈蓉 黏土中两种不同直径单桩水平循环加载模型试验与分析[J]. 岩土力学, 2016, 37 (4): 973- 980
YU Jan, HUANG Maosong, ZHANG Chenrong Model tests and analysis of single piles with two different diameters subjected to cyclic lateral loadings in clay[J]. Rock and Soil Mechanics, 2016, 37 (4): 973- 980
[31]   LAI Y, WANG L, HONG Y, et al Centrifuge modeling of the cyclic lateral behavior of large-diameter monopiles in soft clay: effects of episodic cycling and reconsolidation[J]. Ocean Engineering, 2020, 200: 107048
doi: 10.1016/j.oceaneng.2020.107048
[1] Mi ZHOU,Peng-fei FENG,Ping-jun LIU. Experimental study on pile-soil dynamic interaction in unsaturated loess site[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 824-832.
[2] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[3] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[4] Wei-ping CAO,Bing XIA,Xin GE. Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1946-1954.
[5] HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, ZHANG Xiao-dong. Application of degradation stiffness model in analysis of cumulative lateral displacement of monopile foundation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 721-726.