Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (2): 413-425    DOI: 10.3785/j.issn.1008-973X.2024.02.019
    
Prediction of lateral displacement of retaining structure of soft soil foundation pit based on improved modified mobilizable strength design method
Kan XIAO1(),Shimin ZHANG1,2,Zhi DING2,3,*(),Xiaozhen FAN2,3,Xiao ZHANG1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
3. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, China
Download: HTML     PDF(1994KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The MSD method and its improved method (MMSD method) were modified based on the existing research and the engineering practice experience in order to further optimize the design method of foundation pit in soft soil area and improve the safety and economy of foundation pit support system. A more realistic plastic deformation mechanism was proposed based on the circular sliding mode, and the main influence depth of foundation pit excavation was introduced to quantify the size of displacement field. The method is suitable for analyzing the deformation prediction of the whole process of foundation pit excavation of multi-fulcrum flexible supporting structure in soft clay area. The calculation results of the method were compared with the measured data of six foundation pit projects in Shanghai, the calculation results of elastic fulcrum method and the calculation results of MMSD method. The parameter analysis of the maximum lateral displacement and the maximum lateral displacement depth of the retaining structure in different excavation stages was conducted. Results showed that the predicted value of the method accorded with the measured value, and the prediction accuracy was higher than that of the elastic fulcrum method and MMSD method. The practicability of this method was proved.



Key wordsenergy method      incremental method      wall deflection      soft clay      multi-support excavation     
Received: 01 July 2023      Published: 23 January 2024
CLC:  TU 47  
Fund:  浙江省“尖兵”“领雁”研发攻关计划资助项目(2023C03182);国家自然科学基金资助项目(52178400,52278418);浙江省自然科学基金资助项目(LHZ20E080001,LQ23E080002);浙江省重点研发计划资助项目(2020C01102).
Corresponding Authors: Zhi DING     E-mail: 22112197@zju.edu.cn;dingz@zucc.edu.cn
Cite this article:

Kan XIAO,Shimin ZHANG,Zhi DING,Xiaozhen FAN,Xiao ZHANG. Prediction of lateral displacement of retaining structure of soft soil foundation pit based on improved modified mobilizable strength design method. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 413-425.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.02.019     OR     https://www.zjujournals.com/eng/Y2024/V58/I2/413


基于改进修正动员强度设计方法的软土基坑围护结构侧移预测

为了进一步优化软土地区基坑设计方法,提升基坑支护体系的安全性与经济性,在已有研究的基础上,根据工程实践经验,修正了MSD法和其改进方法(MMSD法). 基于圆弧滑动模式提出更符合实际的塑性变形机制,引入基坑开挖主要影响深度来量化位移场尺寸. 理论计算方法适用于分析软黏土地区多支点式柔性支护结构的基坑开挖全过程的变形预测. 将该方法的计算结果与6个上海地区的基坑工程实测数据、弹性支点法的计算结果及MMSD法的计算结果进行对比分析. 对不同开挖阶段的围护结构最大侧移和最大侧移深度进行参数分析. 结果表明,利用该方法得到的预测值与实测值吻合效果更佳,预测精度高于弹性支点法和MMSD法,证明了该方法的实用性.


关键词: 能量法,  增量法,  墙体侧移,  软黏土,  多支撑开挖 
Fig.1 Plastic deformation mechanism of cantilever retaining wall
Fig.2 Plastic deformation mechanism of foundation pit in MMSD method (wide excavation)
Fig.3 Plastic deformation mechanism of foundation pit in MMSD method (narrow excavation)
Fig.4 Terzaghi destruction mechanism
Fig.5 Overlapped displacement field in MMSD method
Fig.6 Arc sliding failure mechanism
Fig.7 Improved plastic deformation mechanism of foundation pit
Fig.8 Possible settlement affected zone and failure mode
Fig.9 Main influence zone based on active failure mode
Fig.10 Improved overlapping displacement field
Fig.11 Soil mobilization shear strength partition
基坑Tw/mmEI/(kN·m?2)Hw/mHe/mLp/mB/mHi/m
西藏南路8001 280 00038.020.6169.022.81.56.510.814.417.5
浦东南路600540 00027.017.3196.020.80.64.27.811.414.5
浦电路600540 00026.516.5194.020.41.04.27.211.114.2
古北路8001 280 00026.014.5149.517.50.43.97.410.9
兴业大厦8001 280 00031.2512.480800.13.97.110.4
上海南站8001 280 00027.510.954001003.08.5
Tab.1 Summary of design parameters of each foundation pit
Fig.12 Normalized stress-strain relationship of Shanghai K0 consolidated soft soil samples
Fig.13 Calculation procedure of improved MMSD method
Fig.14 Comparison between calculated value and measured value of narrow foundation pit
Fig.15 Comparison between calculated value and measured value of wide foundation pit
Fig.16 Prediction accuracy of maximum lateral displacement
Fig.17 Prediction accuracy of depth of maximum lateral displacement
[1]   郑刚 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44 (1): 1- 36
ZHENG Gang Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (1): 1- 36
doi: 10.11779/CJGE202201001
[2]   郑刚, 朱合华, 刘新荣, 等. 基坑工程与地下工程安全及环境影响控制 [J]. 土木工程学报, 2016, 49(6): 1-24.
ZHENG Gang, ZHU Hehua, LIU Xinrong, et al. Control of safety of deep excavations and underground engineering and its impact on surrounding environment [J]. China Civil Engineering Journal , 2016, 49(6): 1-24.
[3]   丁智, 王达, 王金艳, 等 浙江地区软弱土深基坑变形特点及预测分析[J]. 岩土力学, 2015, 36 (Supple.1): 506- 512
DING Zhi, WANG Da, WANG Jinyan, et al Deformation characteristics of Zhejiang soft soil deep foundation pits and their predictive analysis[J]. Rock and Soil Mechanics, 2015, 36 (Supple.1): 506- 512
[4]   CHENG X S, ZHENG G, DIAO Y, et al Experimental study of the progressive collapse mechanism of excavations retained by cantilever piles[J]. Canadian Geotechnical Journal, 2016, 54 (4): 574- 587
[5]   LI M G, ZHANG Z J, CHEN J J, et al Zoned and staged construction of an underground complex in Shanghai soft clay[J]. Tunnelling and Underground Space Technology, 2017, 67: 187- 200
doi: 10.1016/j.tust.2017.04.016
[6]   木林隆, 黄茂松 基于小应变特性的基坑开挖对邻近桩基影响分析方法[J]. 岩土工程学报, 2014, 36 (Supple.2): 304- 310
MU Linlong, HUANG Maosong Small-strain behavior-based method for effect of excavations on adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Supple.2): 304- 310
doi: 10.11779/CJGE2014S2054
[7]   PITTHAYA J, SITTISAK J, PORNKASEM J, et al Numerical analysis of lateral movements and strut forces in deep cement mixing walls with top-down construction in soft clay[J]. Computers and Geotechnics, 2017, 88: 174- 181
doi: 10.1016/j.compgeo.2017.03.018
[8]   SHI J W, ZHANG X, CHEN Y H, et al Numerical parametric study of countermeasures to alleviate basement excavation effects on an existing tunnel[J]. Tunnelling and Underground Space Technology, 2018, 2018 (72): 145- 153
[9]   张雯超, 史培新, 刘维, 等 基于改进KNN与基坑参数对地连墙变形预测研究[J]. 华中科技大学学报:自然科学版, 2021, 49 (9): 101- 106
ZHANG Wenchao, SHI Peixin, LIU Wei, et al Research on deformation prediction of diaphragm wall based on improved KNN and parameters of subway deep excavation[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49 (9): 101- 106
[10]   洪宇超, 钱建固, 叶源新, 等 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43 (Supple.2): 108- 111
HONG Yuchao, QIAN Jiangu, YE Yuanxin, et al Application of CNN-LSTM model based on spatiotemporal correlation characteristics in deformation prediction of excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (Supple.2): 108- 111
[11]   郭健, 陈健, 胡杨 基于小波智能模型的地铁车站基坑变形时序预测分析[J]. 岩土力学, 2020, 41 (Supple.1): 299- 304
GUO Jian, CHEN Jian, HU Yang Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model[J]. Rock and Soil Mechanics, 2020, 41 (Supple.1): 299- 304
[12]   OSMAN A S, BOLTON M D A new design method for retaining walls in clay[J]. Canadian Geotechnical Journal, 2004, 41 (3): 451- 466
doi: 10.1139/t04-003
[13]   OSMAN A S, BOLTON M D Simple plasticity-based prediction of the undrained settlement of shallow circular foundations on clay[J]. Géotechnique, 2005, 55 (6): 435- 447
[14]   OSMAN A S, BOLTON M D, MAIR R J Predicting 2D ground movements around tunnels in undrained clay[J]. Géotechnique, 2006, 56 (9): 597- 604
[15]   OSMAN A S, BOLTON M D Ground movement predictions for braced excavations in undrained clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (4): 465- 477
doi: 10.1061/(ASCE)1090-0241(2006)132:4(465)
[16]   KLAR A, OSMAN A S Load–displacement solutions for piles and shallow foundations based on deformation fields and energy conservation[J]. Géotechnique, 2008, 58 (7): 581- 589
[17]   LAM S Y, BOLTON M D Energy conservation as a principle underlying mobilizable strength design for deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (11): 1062- 1074
doi: 10.1061/(ASCE)GT.1943-5606.0000510
[18]   WANG L Z, LIU Y J, HONG Y, et al Predicting deformation of multipropped excavations in soft clay with a modified mobilizable strength design (MMSD) method[J]. Computers and Geotechnics, 2018, 104: 54- 68
doi: 10.1016/j.compgeo.2018.07.018
[19]   WANG L Z, LONG F Base stability analysis of braced deep excavation in undrained anisotropic clay with upper bound theory[J]. Science China Technological Sciences, 2014, 57 (9): 1865- 1876
doi: 10.1007/s11431-014-5613-2
[20]   O'ROURKE T D. Base stability and ground movement prediction for excavations in soft clay [C] // Retaining Structures . London: Thomas Telford, 1993: 657-686.
[21]   TERZAGHI K. Theoretical soil mechanics [M]. New York: Wiley, 1943: 26-65.
[22]   黄茂松, 李弈杉, 唐震, 等 基于不排水强度的黏土基坑抗隆起稳定计算方法[J]. 岩土工程学报, 2020, 42 (9): 1577- 1585
HUANG Maosong, LI Yishan, TANG Zhen, et al Analysis method for basal stability of braced excavations in clay based on undrained shear strength[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (9): 1577- 1585
doi: 10.11779/CJGE202009001
[23]   HSIEH P G, OU C Y, LIU H T Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay[J]. Canadian Geotechnical Journal, 2008, 45 (6): 788- 799
doi: 10.1139/T08-006
[24]   王洪新 基坑的尺寸效应及考虑开挖宽度的抗隆起稳定安全系数计算方法[J]. 岩土力学, 2016, 37 (Supple.2): 433- 441
WANG Hongxin Size effect of foundation pits and calculation method of safety factor of heave-resistant stability considering excavation width[J]. Rock and Soil Mechanics, 2016, 37 (Supple.2): 433- 441
[25]   周建, 蔡露, 罗凌晖, 等 各向异性软土基坑抗隆起稳定极限平衡分析[J]. 岩土力学, 2019, 40 (12): 4848- 4856
ZHOU Jian, CAI Lu, LUO Linghui, et al Limit equilibrium analysis on stability against basal heave of excavation in anisotropic soft clay[J]. Rock and Soil Mechanics, 2019, 40 (12): 4848- 4856
[26]   HUANG M S, TANG Z, YUAN J Basal stability analysis of braced excavations with embedded walls in undrained clay using the upper bound theorem[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 79: 231- 241
[27]   HSIEH P G, OU C Y Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35 (6): 1004- 1017
doi: 10.1139/t98-056
[28]   KUNG G T, JUANG C H, HSIAO E C, et al Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (6): 731- 747
doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
[29]   OU C Y, HSIEH P G A simplified method for predicting ground settlement profiles induced by excavation in soft clay[J]. Computers and Geotechnics, 2011, 38 (8): 987- 997
doi: 10.1016/j.compgeo.2011.06.008
[30]   WANG Z W, CHARLES W, LIU G B Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Canadian Geotechnical Journal, 2005, 42 (5): 1243- 1254
doi: 10.1139/t05-056
[31]   徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.
XU Zhonghua. Deformation behavior of deep excavations supported by permanent structure in shanghai soft deposit [D]. Shanghai: Shanghai Jiao Tong University, 2007.
[32]   NG C, HONG Y, LIU G, et al Ground deformations and soil–structure interaction of a multi-propped excavation in Shanghai soft clays[J]. Géotechnique, 2012, 62 (10): 907- 921
[1] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[2] Chao-feng ZENG,Huan LIAO,Miao-kun LI,Xiu-li XUE,Guo-xiong MEI. Effect of buttress wall length on retaining wall deflection induced by dewatering[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2252-2259.
[3] Xiao-dong PAN,Lian-mo ZHOU,Hong-lei SUN,Yuan-qiang CAI,Li SHI,Zong-hao YUAN. Vacuum preloading test for high moisture content slurry using particle image velocimetry[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1078-1085.
[4] Qing-qing ZHENG,Tang-dai XIA,Meng-ya ZHANG,Fei ZHOU. Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 889-898.
[5] KANG Zhi-jun, HUANG Run-qiu, WEI Bin, TAN Yong. Deformation behaviors of deep top-down metro excavation in Shanghai soft clay[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1527-1536.
[6] ZOU Sheng-feng, LI Jin-zhu, WANG Zhong-jin, LAN Lu, WANG Wen-jun, XIE Xin-yu. Seepage test and empirical models for soils based on GDS apparatus[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 856-862.
[7] TAN Yong, KANG Zhi jun, WEI Bin, DENG Gang. Case study on deep excavation for metro ventilation shaft in Shanghai soft clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1048-1055.
[8] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[9] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[10] XIE Xin-yu, HUANG Jie-qing, WANG Wen-jun, LI Jin-zhu. Influence of weight of soils on nonlinear finite strain consolidation for Ningbo soft clay[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 827-834.
[11] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1579-1584.
[12] GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2111-2117.
[13] HU Ya-yuan, JIANG Tao. Impact of secondary consolidation coefficient on consolidation
characteristics of quasi over-consolidated clay
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1088-1093.