Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (12): 2533-2543    DOI: 10.3785/j.issn.1008-973X.2023.12.020
    
Performance optimization of RIS assisted dual-function radar and covert communication system
Lang-tao HU1(),Rui YANG1,Chong-wen HUANG2,*(),Quan-jin LIU1,Lei WU1,Zhen-kun TAN1
1. School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China
2. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1547KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi strategy alternating optimization (MSAO) algorithm was proposed for covert transmission of the reconfigurable intelligence surface (RIS) assisted dual-function radar and communication (DFRC) system. Under the conditions of covert constraints, radar constant modulus constraints and total power constraints, the communication beamforming vector, radar signal covariance matrix and RIS phase shift matrix were jointly designed to maximize the legitimate user Bob’ s covert communication rate and probing power at target, in order to achieve a tradeoff between covert communication and radar sensing. In both the perfect and imperfect Willie’ s channel state information scenarios, the simulation results show that deploying RIS in a generalized fully connected mode can better transmit beamforming maps, increase the upper limit of Bob’ s covert communication rate, expand the achievable range of rates, and achieve greater freedom in communication and sensing functions compared to traditional single connected RIS and systems without RIS deployment.



Key wordsbeamforming design      covert communication      dual-function radar and communication (DFRC)      reconfigurable intelligence surface (RIS)      generalized fully connected RIS     
Received: 13 March 2023      Published: 27 December 2023
CLC:  TN 929.5  
Fund:  国家重点研发计划资助项目(2021YFA1000500);国家自然科学基金资助项目(62101492);浙江省杰出青年基金资助项目(LR22F010002)
Corresponding Authors: Chong-wen HUANG     E-mail: 122634998@qq.com;chongwenhuang@zju.edu.cn
Cite this article:

Lang-tao HU,Rui YANG,Chong-wen HUANG,Quan-jin LIU,Lei WU,Zhen-kun TAN. Performance optimization of RIS assisted dual-function radar and covert communication system. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2533-2543.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.12.020     OR     https://www.zjujournals.com/eng/Y2023/V57/I12/2533


RIS辅助双功能雷达与隐蔽通信系统性能优化

针对智能超表面(RIS)辅助双功能雷达与通信(DFRC)系统的隐蔽传输问题,提出多策略交替优化(MSAO)算法. 在隐蔽约束、雷达恒模约束和总功率约束的条件下,通过联合设计通信波束赋形向量、雷达信号协方差矩阵和RIS相位偏转矩阵,最大化合法用户Bob的隐蔽通信速率和目标探测功率,实现隐蔽通信和雷达感知功能的折中. 在完美Willie信道状态信息和不完美Willie信道状态信息场景下,仿真结果表明,相对于传统单连接RIS和没有部署RIS系统,采用广义全连接模式部署RIS可以更好地传输波束方向图,提高Bob隐蔽通信速率上限,扩大可实现速率的范围,实现通信和感知功能更大的自由度.


关键词: 波束赋形设计,  隐蔽通信,  双功能雷达与通信(DFRC),  智能超表面(RIS),  广义全连接RIS 
Fig.1 RIS-assisted DFRC covert communication system model
参数 数值
BS位置/m (0, 0)
RIS位置/m (200 , 0 )
Bob位置/m 在以(200 , 30)为中心,半径<10
Willie位置/m (180 , 40 )
目标方向 从BS发射沿 ${0^\circ }$方向
BS天线数M 16
RIS反射元件数N 20
系统发射功率P/dBm 20
噪声功率 $ \sigma _{\rm{b}}^2 、 \sigma _{\rm{w}}^2 $/dBm 0
间接路径损失/dB $35.6+22.0\lg d{\text{ }}$
直接路径损失/dB $32.6+36.7\lg d{\text{ }}$
隐蔽性阈值 0.005
CSI误差 ${v_{\rm{w}}} $ 0.005
Tab.1 Simulation parameters setting of RIS assisted DFRC covert communication system
Fig.2 Convergence of multi strategy alternating optimization algorithm
Fig.3 Comparison of beam pattern in two Willie’s scenarios
Fig.4 Tradeoff between probing power at target and Bob’s covert rate in two Willie’s scenarios
Fig.5 Effect of number of reflective elements of RIS on beam pattern
Fig.6 Effect of RIS horizontal deployment location on beam patterns
Fig.7 Relationship between covertness threshold and Bob’s covert rate
Fig.8 Relationship between covertness threshold and probability of detection error
[1]   LIU F, MASOUROS C, PETROPULU A P, et al Joint radar and communication design: applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68 (6): 3834- 3862
doi: 10.1109/TCOMM.2020.2973976
[2]   王晓云, 张小舟, 马良, 等 6G通信感知一体化网络的感知算法研究与优化[J]. 通信学报, 2023, 44 (2): 219- 230
WANG Xiao-yun, ZHANG Xiao-zhou, MA Liang, et al Research and optimization on the sensing algorithm for 6G integrated sensing and communication network[J]. Journal on Communications, 2023, 44 (2): 219- 230
[3]   LIU F, ZHOU L, MASOUROS C, et al Towards dual-functional radar-communication systems: optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66 (16): 4264- 4279
doi: 10.1109/TSP.2018.2847648
[4]   MA S, SHENG H, YANG R, et al Covert beamforming design for integrated radar sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 22 (1): 718- 731
[5]   HUANG C, ZAPPONE A, ALEXANDROPOULOS G C, et al Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18 (8): 4157- 4170
doi: 10.1109/TWC.2019.2922609
[6]   郭海燕, 杨震, 邹玉龙, 等 基于主被动波束成形联合优化的双 RIS 辅助抗干扰通信方法[J]. 通信学报, 2022, 43 (7): 21- 30
GUO Hai-yan, YANG Zhen, ZOU Yu-long, et al Double-RIS assisted anti-jamming communication method based on joint active and passive beamforming optimization[J]. Journal on Communications, 2022, 43 (7): 21- 30
[7]   杨晓宇, 尉志青, 孟春伟 可重构智能表面辅助的通信感知一体化系统[J]. 中兴通讯技术, 2022, 28 (5): 17- 22
YANG Xiao-yu, WEI Zhi-qing, MENG Chun-wei Reconfigurable intelligent surface-assisted lntegrated sensing and communication system[J]. ZTE Technology Journal, 2022, 28 (5): 17- 22
doi: 10.12142/ZTETJ.202205005
[8]   WU Q, ZHANG R Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18 (11): 5394- 5409
doi: 10.1109/TWC.2019.2936025
[9]   BUZZI S, GROSSI E, LOPS M, et al Radar target detection aided by reconfigurable intelligent surfaces[J]. IEEE Signal Processing Letters, 2021, 28: 1315- 1319
doi: 10.1109/LSP.2021.3089085
[10]   XU C, CLERCKX B, ZHANG J Multi-antenna joint radar and communications: precoder optimization and weighted sum-rate vs probing power tradeoff[J]. IEEE Access, 2020, 8: 173974- 173982
doi: 10.1109/ACCESS.2020.3025156
[11]   DELIGIANNIS A, DANIYAN A, LAMBOTHARAN S, et al Secrecy rate optimizations for MIMO communication radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (5): 2481- 2492
doi: 10.1109/TAES.2018.2820370
[12]   CHALISE B K, AMIN M G Performance tradeoff in a unified system of communications and passive radar: a secrecy capacity approach[J]. Digital Signal Processing, 2018, 82: 282- 293
doi: 10.1016/j.dsp.2018.06.017
[13]   杨杰, 季新生, 王飞虎, 等 窃听者随机分布下智能反射面辅助的MISO系统物理层安全性能分析[J]. 电子与信息学报, 2022, 44 (5): 1809- 1818
YANG Jie, JI Xin-sheng, WANG Fei-hu, et al Performance analysis of physical layer security for IRS-aided MISO system with randomly distributed eavesdropping nodes[J]. Journal of Electronics and Information Technology, 2022, 44 (5): 1809- 1818
[14]   CHU J, LIU R, LI M, et al Joint secure transmit beamforming designs for integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72 (4): 4778- 4791
doi: 10.1109/TVT.2022.3225952
[15]   WANG D, QI P, ZHAO Y, et al Covert wireless communication with noise uncertainty in space-air-ground integrated vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (3): 2784- 2797
doi: 10.1109/TITS.2021.3098790
[16]   MA S, ZHANG Y, LI H, et al Covert beamforming design for intelligent-reflecting-surface-assisted IoT networks[J]. IEEE Internet of Things Journal, 2022, 9 (7): 5489- 5501
doi: 10.1109/JIOT.2021.3109746
[17]   ZHOU X, YAN S, WU Q, et al Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2022, 21 (1): 532- 547
doi: 10.1109/TWC.2021.3098099
[18]   SI J, LI Z, ZHAO Y, et al Covert transmission assisted by intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69 (8): 5394- 5408
doi: 10.1109/TCOMM.2021.3082779
[19]   WANG X, FEI Z, ZHENG Z, et al Joint waveform design and passive beamforming for RIS-assisted dual-functional radar-communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (5): 5131- 5136
doi: 10.1109/TVT.2021.3075497
[20]   SHEN S, CLERCKX B, MURCH R Modeling and architecture design of reconfigurable intelligent surfaces using scattering parameter network analysis[J]. IEEE Transactions on Wireless Communications, 2022, 21 (2): 1229- 1243
doi: 10.1109/TWC.2021.3103256
[21]   LEHMANN E L, ROMANO J P. Testing statistical hypotheses [M]. New York: Springer, 2005.
[22]   LIU F, MASOUROS C A tutorial on joint radar and communication transmission for vehicular networks—Part I: background and fundamentals[J]. IEEE Communications Letters, 2021, 25 (2): 322- 326
doi: 10.1109/LCOMM.2020.3025310
[23]   YAN S, CONG Y, HANLY S V, et al Gaussian signalling for covert communications[J]. IEEE Transactions on Wireless Communications, 2019, 18 (7): 3542- 3553
doi: 10.1109/TWC.2019.2915305
[24]   CHRISTENSEN S S, AGARWAL R, DE CARVALHO E, et al Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design[J]. IEEE Transactions on Wireless Communications, 2008, 7 (12): 4792- 4799
doi: 10.1109/T-WC.2008.070851
[25]   LUO Z Q, MA W K, SO A M C, et al Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27 (3): 20- 34
doi: 10.1109/MSP.2010.936019
[26]   SHEN K, YU W Fractional programming for communication systems—Part II: uplink scheduling via matching[J]. IEEE Transactions on Signal Processing, 2018, 66 (10): 2631- 2644
doi: 10.1109/TSP.2018.2812748
[27]   SHEN K, YU W Fractional programming for communication systems—Part I: power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66 (10): 2616- 2630
doi: 10.1109/TSP.2018.2812733
[28]   WEI L, HUANG C, ALEXANDROPOULOS G C, et al Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69 (6): 4144- 4157
doi: 10.1109/TCOMM.2021.3063236
[29]   FOROUZESH M, AZMI P, MOKARI N, et al Covert communication using null space and 3D beamforming: Uncertainty of Willie’s location information[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (8): 8568- 8576
doi: 10.1109/TVT.2020.2997074
[30]   NG D W K, LO E S, SCHOBER R Robust beamforming for secure communication in systems with wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2014, 13 (8): 4599- 4615
doi: 10.1109/TWC.2014.2314654
[1] Jun-jie CHEN,Hong-jun LI,Xiao-jun ZHU. Dynamic deployment algorithm of 5G core network user plane using Benders decomposition[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 625-631.
[2] RONG Zhi-neng, JIN Wen-guang, LUO Yi-xi. Design of wireless network on human motion capture[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1314-1319.
[3] QIU Qin-long, WU Chun-ming , PING Ling-di , LV Hong-bing. Retransmitting TCP acknowledgement packet and its application
in long term evolution network
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1509-1515.
[4] ZHAO Xian-hong, YANG Jun, ZHAO Li-min. Novel nulling forming algorithm based on amplitude perturbation[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 64-67.
[5] CHEN Xun, ZHANG Chao-Yang, LUO Hai-Yan. Joint optimization of power control, channel assignment and scheduling in wireless mesh network[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1406-1411.