|
|
Solution approach of Burgers-Fisher equation based on physics-informed neural networks |
Jian XU( ),Hai-long ZHU*( ),Jiang-le ZHU,Chun-zhong LI |
School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China |
|
|
Abstract Physical information was divided into rule information and numerical information, in order to explore the role of physical information in training neural network when solving differential equations with physics-informed neural network (PINN). The logic of PINN for solving differential equations was explained, as well as the data-driven approach of physical information and neural network interpretability. Synthetic loss function of neural network was designed based on the two types of information, and the training balance degree was established from the aspects of training sampling and training intensity. The experiment of solving the Burgers-Fisher equation by PINN showed that PINN can obtain good solution accuracy and stability. In the training of neural networks for solving the equation, numerical information of the Burgers-Fisher equation can better promote neural network to approximate the equation solution than rule information. The training effect of neural network was improved with the increase of training sampling, training epoch, and the balance between the two types of information. In addition, the solving accuracy of the equation was improved with the increasing of the scale of neural network, but the training time of each epoch was also increased. In a fixed training time, it is not true that the larger scale of the neural network, the better the effect.
|
Received: 31 January 2023
Published: 11 December 2023
|
|
Fund: 国家自然科学基金资助项目(72131006,71971001,71803001);安徽省教育厅高校自然科学研究重点资助项目(KJ2021A0473,KJ2021A0481,2022AH050608) |
Corresponding Authors:
Hai-long ZHU
E-mail: jianx1982@vip.163.com;hai-long-zhu@163.com
|
基于物理信息神经网络的Burgers-Fisher方程求解方法
为了探索基于物理信息的神经网络(PINN)求解微分方程时,物理信息在训练神经网络中的作用,提出将物理信息分为规律信息和数值信息2类,以阐释PINN求解微分方程的逻辑,以及物理信息的数据驱动方式和神经网络可解释性.设计基于2类信息的神经网络综合损失函数,并从训练采样和训练强度2方面建立信息的训练平衡度,从而利用PINN求解Burgers-Fisher方程. 实验表明,PINN能够获得较好的方程求解精度和稳定性;在求解方程的神经网络训练中,Burgers-Fisher方程的数值信息比规律信息能更好地促进神经网络逼近方程解;随着训练采样和迭代次数的增加,以及2类信息的平衡,神经网络训练效果得到提高;增加神经网络规模可以提高方程求解精度,但也增加了网络训练迭代时间,在固定训练时间下并非神经网络规模越大效果越好.
关键词:
Burgers-Fisher方程,
基于物理信息的神经网络,
规律信息,
数值信息,
数据驱动,
可解释性,
训练平衡度
|
|
[1] |
王意存, 邢江宽, 罗坤, 等 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报: 工学版, 2022, 56 (10): 1375- 1383 WANG Yi-cun, XING Jiang-kuan, LUO Kun, et al Solving combustion chemical differential equations via physics-informed neural network[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (10): 1375- 1383
|
|
|
[2] |
AMES W F. Numerical methods for partial differential equations [M]. [s. l. ]: Academic press, 1992.
|
|
|
[3] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686- 707
doi: 10.1016/j.jcp.2018.10.045
|
|
|
[4] |
李野, 陈松灿 基于物理信息的神经网络: 最新进展与展望[J]. 计算机科学, 2022, 49 (4): 254- 262 LI Ye, CHEN Song-can Physics-informed neural networks: recent advances and prospects[J]. Computer Science, 2022, 49 (4): 254- 262
doi: 10.11896/jsjkx.210500158
|
|
|
[5] |
LU L, MENG X, MAO Z, et al DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63 (1): 208- 228
doi: 10.1137/19M1274067
|
|
|
[6] |
LIN S, CHEN Y A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions[J]. Journal of Computational Physics, 2022, 457: 111053
doi: 10.1016/j.jcp.2022.111053
|
|
|
[7] |
LIN S, CHEN Y Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions[J]. Physica D: Nonlinear Phenomena, 2023, 445: 133629
doi: 10.1016/j.physd.2022.133629
|
|
|
[8] |
MIAO Z W, CHEN Y Physics-informed neural networks method in high-dimensional integrable systems[J]. Modern Physics Letters B, 2022, 36 (1): 2150531
doi: 10.1142/S021798492150531X
|
|
|
[9] |
PU J C, CHEN Y Data-driven forward-inverse problems for Yajima–Oikawa system using deep learning with parameter regularization[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 118: 107051
doi: 10.1016/j.cnsns.2022.107051
|
|
|
[10] |
潘悦悦, 吴立飞, 杨晓忠 Burgers-Fisher方程改进的交替分段Crank-Nicolson并行差分方法[J]. 高校应用数学学报A辑, 2021, 36 (2): 193- 207 PAN Yue-yue, WU Li-fei, YANG Xiao-zhong The improved alternating segment Crank-Nicolson parallel difference method for Burgers-Fisher equation[J]. Applied Mathematics A Journal of Chinese Universities: Ser. A, 2021, 36 (2): 193- 207
doi: 10.13299/j.cnki.amjcu.002168
|
|
|
[11] |
KUMAR S, SAHA RAY S Numerical treatment for Burgers-Fisher and generalized Burgers-Fisher equations[J]. Mathematical Sciences, 2021, 15 (1): 21- 28
doi: 10.1007/s40096-020-00356-3
|
|
|
[12] |
ISMAIL H N, RASLAN K, ABD RABBOH A A Adomian decomposition method for Burger’s-Huxley and Burger’s-Fisher equations[J]. Applied Mathematics and Computation, 2004, 159 (1): 291- 301
doi: 10.1016/j.amc.2003.10.050
|
|
|
[13] |
RASHIDI M, GANJI D, DINARVAND S Explicit analytical solutions of the generalized Burger and Burger-Fisher equations by homotopy perturbation method[J]. Numerical Methods for Partial Differential Equations, 2009, 25 (2): 409- 417
doi: 10.1002/num.20350
|
|
|
[14] |
JAVIDI M Spectral collocation method for the solution of the generalized Burger-Fisher equation[J]. Applied Mathematics and Computation, 2006, 174 (1): 345- 352
doi: 10.1016/j.amc.2005.04.084
|
|
|
[15] |
ZHAO T G, LI C, ZANG Z L, et al Chebyshev-Legendre pseudo-spectral method for the generalised Burgers-Fisher equation[J]. Applied Mathematical Modelling, 2012, 36 (3): 1046- 1056
doi: 10.1016/j.apm.2011.07.059
|
|
|
[16] |
GOLBABAI A, JAVIDI M A spectral domain decomposition approach for the generalized Burger's-Fisher equation[J]. Chaos Solitons and Fractals, 2009, 39 (1): 385- 392
doi: 10.1016/j.chaos.2007.04.013
|
|
|
[17] |
ALOTAIBI B M, SHAH R S, NONLAOPON K, et al Investigation of the time-fractional generalized Burgers-Fisher equation via novel techniques[J]. Symmetry-Basel, 2023, 15 (1): 108
|
|
|
[18] |
赵国忠, 郭怀民, 郭鹏云, 等 求解广义Burgers-Huxley方程和广义Burgers-Fisher方程的一类局部间断Petrov-Galerkin方法研究(英文)[J]. 高等学校计算数学学报, 2020, 42 (3): 193- 208 ZHAO Guo-zhong, GUO Huai-min, GUO Peng-yun, et al A local discontinuous Petrov-Galerkin method for the generalized Burgers-Huxley equation and Burgers-Fisher equation[J]. Numerical Mathematics: A Journal of Chinese Universities, 2020, 42 (3): 193- 208
|
|
|
[19] |
SINGH A, DAHIYA S, SINGH S P A fourth-order B-spline collocation method for nonlinear Burgers-Fisher equation[J]. Mathematical Sciences, 2020, 14 (1): 75- 85
doi: 10.1007/s40096-019-00317-5
|
|
|
[20] |
JAGTAP A D, KAWAGUCHI K, EM KARNIADAKIS G Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2020, 476 (2239): 20200334
doi: 10.1098/rspa.2020.0334
|
|
|
[21] |
VON RUEDEN L, MAYER S, BECKH K, et al Informed machine learning: a taxonomy and survey of integrating prior knowledge into learning systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35 (1): 614- 633
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|