Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (10): 2106-2115    DOI: 10.3785/j.issn.1008-973X.2023.10.019
    
Urban building heating energy consumption benchmark based on Bayesian MCMC method
Wei NA1(),Jia-le BING1,Pin-yan LIU2
1. School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2. School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Download: HTML     PDF(1434KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The model of benchmarking building energy use in city-scale should tackle the challenges on reliable evaluation and calibration for building energy consumption, regarding issues of insufficient building samples, input uncertainties, modelling complexity, and computing cost in the development. A mixed-effect probability model was proposed in accordance with Bayesian theory. The characteristic indicators such as urban climate, building distribution and construction status were used as model inputs. The metering data of energy consumption from 223 heating substation samples were used as training data. Markov Chain Monte Carlo (MCMC) simulation was utilized to conduct importance sampling, and building energy use intensity for space heating (EUIH) in city-scale were calibrated. The mixed-effect probability model was validated by a new dataset with 48 heating substations, which the values of normalized mean bias error (NMBE), root mean square error (RMSE), and cofficient of variation root mean squared error (CVRMSE) indices were 0.400%, 0.034, 13.100%. The results show that the model can be effectively used to calibrate building energy consumption for heating. The EUIH point and interval estimation results of the model can serve as the benchmark for the urban building heating energy consumption. The proposed benchmark of city-scale building heating energy was compared with that of international energy agercy (IEA) member countries , and the reveal resident building in Beijing had lower EUIH and less potential on the energy conservation for heating.



Key wordsbuilding energy consumption benchmark      Bayesian theory      MCMC approach      city-scale      building energy consumption prediction     
Received: 08 May 2022      Published: 18 October 2023
CLC:  TU 111.195  
Fund:  北京市社会科学基金资助项目(20GLB025)
Cite this article:

Wei NA,Jia-le BING,Pin-yan LIU. Urban building heating energy consumption benchmark based on Bayesian MCMC method. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2106-2115.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.10.019     OR     https://www.zjujournals.com/eng/Y2023/V57/I10/2106


基于贝叶斯MCMC方法的城市建筑供热能耗基准

城市尺度建筑能耗基准的研究模型需解决建筑样本数据有限、输入不确定性强、建模复杂度和计算成本高的问题,据此提出贝叶斯框架的混合效应模型. 利用城市气候、建筑分布和建造状况等特征指标作为模型输入,采集223座居住建筑的热力站能耗监测数据作为测试集样本,通过马尔科夫链蒙特卡洛(MCMC)方法进行重要性采样,并预测城市尺度建筑供热能耗强度(EUIH). 混合效应模型通过48座居住建筑的热力站能耗监测数据进行验证,预测精度指标归一比平均偏差(NMBE)为0.400%,均方根误差(RMSE)为0.034,均方根误差变异系数(CVRMSE)为13.100%. 结果显示模型能够有效地预测和校准建筑供热能耗预测和校准,模型的EUIH点估计和区间估计结果可以作为城市建筑供热能耗基准依据. 北京市城市建筑的供热能耗基准与国际能源署(IEA)国家的相关基准进行对比,反映出北京市居住建筑供热能耗较低及节能潜力较小.


关键词: 建筑能耗基准,  贝叶斯理论,  马尔科夫链蒙特卡洛方法,  城市尺度,  建筑能耗预测 
Fig.1 Comparison of building energy consumption prediction models on information volume, modeling complexity, population size, computing resources and time cost
Fig.2 Flowchart outlining of typical steps involved in MCMC simulation
样本EUIH值区间(GJ/m2) S/座 SP/% A/hm2 AP/%
>0.300 11 5.1 41.8 3.9
0.250~0.300 137 61.3 774.5 71.4
0.200~0.250 27 12.0 61.1 5.6
<0.200 48 21.6 207.6 19.1
总计 223 100 1 085 100
样本中居住建筑所采用居住建筑节能设计标准 S/座 SP/% A/hm2 AP/%
未采用节能设计标准(非节能建筑)采用30%节能设计标准 31 13.9 116.0 10.7
(“一步”节能建筑)采用50%节能设计标准 37 16.6 130.0 12.0
(“二步”节能建筑) 100 44.8 495.0 45.6
采用65%节能设计标准及以上(“三步”节能建筑) 55 24.7 344.0 31.7
总计 223 100 1 085 100
Tab.1 Sample composition of proposed training dataset
Fig.3 Trace of potential scale reduction factor
Fig.4 Trace plot of 3 Markov chains in iterations
Fig.5 ACF of residuals of model from 3 Markov chains
Fig.6 Comparison between metered EUIH with calibrated EUIH for heating substation samples in validation dataset of model
Fig.7 Posterior distributions of parameters in mixed effects model
Fig.8 Joint posterior distribution for EUIH of residential buildings in Beijing
Fig.9 Comparison of benchmark of EUIH for residential building between city of IEA number countries and Beijing
[1]   李紫微, 林波荣, 陈洪钟 建筑方案能耗快速预测方法研究综述[J]. 暖通空调, 2018, 48 (5): 8
LI Zi-wei, LIN Bo-rong, CHEN Hong-zhong Review of rapid prediction method of building energy consumption[J]. Heating Ventilating and Air Conditioning, 2018, 48 (5): 8
[2]   柳靖, 赵雨旸, 张岚 建筑能耗基准研究综述[J]. 建筑科学, 2021, 37 (12): 120- 130
LIU Jing, ZHAO Yu-yang, ZHANG Lan Literature review on building energy consumption benchmark[J]. Building Science, 2021, 37 (12): 120- 130
doi: 10.13614/j.cnki.11-1962/tu.2021.12.17
[3]   曹勇, 魏峥, 刘辉, 等 德国VDI3807标准对我国能耗定额的启示[J]. 建设科技, 2011, (22): 78- 81
CAO Yong, WEI Zheng, LIU Hui, et al The enlightenment of German VDI3807 standard to Chinese energy consumption quota[J]. Construction Science and Technology, 2011, (22): 78- 81
doi: 10.3969/j.issn.1671-3915.2011.22.041
[4]   魏峥, 邹瑜, 王虹 英国公共建筑能耗基准评价方法对我国建筑能耗定额方法的启示[J]. 建筑科学, 2011, 27 (10): 7- 12
WEI Zheng, ZOU Yu, WANG Hong Introduction on British public building energy consumption benchmark evaluation methods and enlightenment for China[J]. Building Science, 2011, 27 (10): 7- 12
doi: 10.3969/j.issn.1002-8528.2011.10.002
[5]   朱明亚, 潘毅群, 吕岩, 等 能耗预测模型在建筑能效优化中的应用研究[J]. 建筑科学, 2020, 36 (10): 35- 46
ZHU Ming-ya, PAN Yi-qun, Lv Yan, et al Application review of energy consumption prediction models in building energy efficiency optimization[J]. Building Science, 2020, 36 (10): 35- 46
doi: 10.13614/j.cnki.11-1962/tu.2020.10.05
[6]   U. S. department of energy’s ( DOE) building technologies office (BTO) energyplus [EB/OL]. [2022-03-25]. https://energyplus.net/.
[7]   TURHAN C, KAZANASMAZ T, UYGUN I E, et al Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation[J]. Energy and Buildings, 2014, 85: 115- 125
doi: 10.1016/j.enbuild.2014.09.026
[8]   鲁艳蕊 基于Design Builder模拟的郑州高层办公建筑能耗研究[J]. 山东农业大学学报: 自然科学版, 2020, 51 (2): 355- 359
LU Yan-rui Study on energy consumption of high rise office buildings in Zhengzhou based on design builder simulation[J]. Journal of Shandong Agricultural University: Natural Science Edition, 2020, 51 (2): 355- 359
[9]   LI K, HU C, LIU G, et al Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis[J]. Energy and Buildings, 2015, 108: 106- 113
doi: 10.1016/j.enbuild.2015.09.002
[10]   WANG E, SHEN Z, GROSSKOPF K Benchmarking energy performance of building envelopes through a selective residual-clustering approach using high dimensional dataset[J]. Energy and Buildings, 2014, 75: 10- 22
doi: 10.1016/j.enbuild.2013.12.055
[11]   ROTH J, RAJAGOPAL R Benchmarking building energy efficiency using quantile regression[J]. Energy, 2018, 152: 866- 876
doi: 10.1016/j.energy.2018.02.108
[12]   潘毅群. 实用建筑能耗模拟手册[M]. 北京: 中国建筑工业出版社, 2013: 45-48.
[13]   NETO A H, FIORELLI F A S Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption[J]. Energy and Buildings, 2008, 40 (12): 2169- 2176
doi: 10.1016/j.enbuild.2008.06.013
[14]   YANG Z, ROTH J, JAIN R K DUE-B: data-driven urban energy benchmarking of buildings using recursive partitioning and stochastic frontier analysis[J]. Energy and Buildings, 2018, 163: 58- 69
doi: 10.1016/j.enbuild.2017.12.040
[15]   LIU J, CHEN H, LIU J, et al An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information[J]. Applied Energy, 2017, 206: 193- 205
doi: 10.1016/j.apenergy.2017.08.153
[16]   YALCINTAS M An energy benchmarking model based on artificial neural network method with a case example for tropical climates[J]. International Journal of Energy Research, 2010, 30 (14): 1158- 1174
[17]   LI Y, O'NEILL Z, ZHANG L, et al Grey box modeling and application for building energy simulations a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111174
doi: 10.1016/j.rser.2021.111174
[18]   BRAUN J E, CHATURVEDI N An inverse gray-box model for transient building load prediction[J]. HVAC and R Research, 2002, 8 (1): 73- 99
doi: 10.1080/10789669.2002.10391290
[19]   石欣, 张琦, 赵莹, 等 RC热网络建筑能耗预测模型综述[J]. 仪器仪表学报, 2014, 35 (S2): 59- 65
SHI Xin, ZHANG Qi, ZHAO Ying, et al Review of RC thermal network building energy consumption forecasting model[J]. Chinese Journal of Scientific Instrument, 2014, 35 (S2): 59- 65
doi: 10.19650/j.cnki.cjsi.2014.s2.009
[20]   XIAO H, WEI Q, JIANG Y The reality and statistical distribution of energy consumption in office buildings in China[J]. Energy and Buildings, 2012, 50: 259- 265
doi: 10.1016/j.enbuild.2012.03.048
[21]   HUO T, REN H, ZHANG X, et al China's energy consumption in the building sector: a statistical year book energy balance sheet based splitting method[J]. Journal of Cleaner Production, 2018, 185: 665- 679
doi: 10.1016/j.jclepro.2018.02.283
[22]   ZHANG M, GE X, ZHAO Y, et al Creating statistics for China’s building energy consumption using an adapted energy balance sheet[J]. Energies, 2019, 12 (22): 4293
doi: 10.3390/en12224293
[23]   Characteristic values of energy consumption in buildings − Heating and electricity: VDI 3807 Sheet 2[S]. Verband Deutscher Ingenieure/Association of German Engineers. 1998: 87-97.
[24]   YAN D, O’BRIEN W, HONG T, et al Occupant behavior modeling for building performance simulation: current state and future challenges[J]. Energy and Buildings, 2015, 107: 264- 278
doi: 10.1016/j.enbuild.2015.08.032
[25]   REINHART C F, DAVILA C C Urban building energy modeling a review of a nascent field[J]. Building and Environment, 2016, 97: 196- 202
doi: 10.1016/j.buildenv.2015.12.001
[26]   YANG Z, BECERIKGERBER B A model calibration framework for simultaneous multi-level building energy simulation[J]. Applied Energy, 2015, 149: 415- 431
doi: 10.1016/j.apenergy.2015.03.048
[27]   DENG H, FANNON D, ECKELMAN M Predictive modeling for US commercial building energy use: a comparison of existing statistical and machine learning algorithms using CBECS microdata[J]. Energy and Buildings, 2017, 163: 34- 43
[28]   DAHLIN J. Accelerating monte Carlo methods for Bayesian inference in dynamical models [M]. Sweden: LUEP, 2016: 59-67.
[29]   DRONKELAAR C V, DOWSON M, SPATARU C, et al A review of the regulatory energy performance gap and its underlying causes in nondomestic buildings[J]. Frontiers in Mechanical Engineering, 2016, 1: 1- 14
[30]   WEI Y, ZHANG X, SHI Y, et al A review of data driven approaches for prediction and classification of building energy consumption[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1027- 1047
doi: 10.1016/j.rser.2017.09.108
[31]   ARNQVIST G Mixed models offer no freedom from degrees of freedom[J]. Trends in Ecology and Evolution, 2020, 35 (4): 329- 335
doi: 10.1016/j.tree.2019.12.004
[32]   BOLKER B M, BROOKS M E, CLARK C J, et al Generalized linear mixed models: a practical guide for ecology and evolution[J]. Trends in Ecology and Evolution, 2009, 24 (3): 127- 135
doi: 10.1016/j.tree.2008.10.008
[33]   HARRISON X A, DONALDSON L, CORREA CANO M E, et al A brief introduction to mixed effects modelling and multi-model inference in ecology[J]. Peer J, 2018, 6: 4794
doi: 10.7717/peerj.4794
[34]   KELLY R, HEALY K, ANAND M, et al Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale[J]. Ecology Letters, 2021, 24 (5): 970- 983
doi: 10.1111/ele.13704
[35]   NAKAGAWA S, SCHIELZETH H A general and simple method for obtaining R2 from generalized linear mixed effects models[J]. Methods in Ecology and Evolution, 2013, 4 (2): 133- 142
doi: 10.1111/j.2041-210x.2012.00261.x
[36]   RAILLON L, GHIAUS C An efficient Bayesian experimental calibration of dynamic thermal models[J]. Energy, 2018, 152: 818- 833
doi: 10.1016/j.energy.2018.03.168
[37]   SANKARARAMAN S, MCLEMORE K, MAHADEVAN S. Bayesian methods for uncertainty quantification in multi-level systems [C]// Topics in Model Validation and Uncertainty Quantification, Volume 4: Proceedings of the 30th IMAC, A Conference on Structural Dynamics. New York: Springer, 2012: 67-74.
[38]   WANG C K, TINDEMANS S, MILLER C, et al Bayesian calibration at the urban scale: a case study on a large residential heating demand application in Amsterdam[J]. Journal of Building Performance Simulation, 2020, 13 (3): 347- 361
doi: 10.1080/19401493.2020.1729862
[39]   LAMBERT P C, SUTTON A J, BURTON P R, et al How vague is vague, a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS[J]. Stat Med, 2005, 24 (15): 2401- 2428
doi: 10.1002/sim.2112
[40]   WANG X, HE C Z, SUN D Bayesian population estimation for small sample capture-recapture data using noninformative priors[J]. Journal of Statistical Planning and Inference, 2007, 137 (4): 1099- 1118
doi: 10.1016/j.jspi.2006.03.004
[41]   尹爱军, 赵磊, 吴宏钢 相关法动平衡校正中的3σ准则误差处理方法[J]. 重庆大学学报, 2013, 36 (10): 22- 26
YIN Ai-jun, ZHAO Lei, WU Hong-gang Error process based on 3σ rule used in balancing by correlation theory[J]. Journal of Chongqing University, 2013, 36 (10): 22- 26
[42]   胡沛然, 陈少辉 权重归一化拉格朗日插值及其空间降尺度应用[J]. 遥感信息, 2019, 34 (6): 63- 71
HU Pei-ran, CHEN Shao-hui Weight normalization based lagrange interpolation and its application in downscaling[J]. Remote Sensing Information, 2019, 34 (6): 63- 71
doi: 10.3969/j.issn.1000-3177.2019.06.011
[43]   GELMAN A, HWANG J, VEHTARI A Understanding predictive information criteria for Bayesian models[J]. Statistics and Computing, 2014, 24 (6): 997- 1016
doi: 10.1007/s11222-013-9416-2
[44]   BROOKS S P, GELMAN A General methods for monitoring convergence of iterative simulations[J]. Journal of Computational and Graphical Statistics, 1998, 7 (4): 434- 455
[45]   GELMAN A, CARLIN J B, STERN H S, et al. Bayesian data analysis, third edition [M]. Boca Raton: CRCP, 2013: 281-286.
[46]   ASHRAE. ASHRAE Guideline 14–2014: Measurement of energy, demand, and water savings[S]. Atlanta: ASHRAE, 2014: 21-25.
[1] Jun-qi YU,Si-yuan YANG,An-jun ZHAO,Zhi-kun GAO. Hybrid prediction model of building energy consumption based on neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1220-1231.
[2] WANG Ji kui . Bayesian conflicting Web data credibility algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2380-2385.