|
|
Multi-scale spatiotemporal influencing factors of bike-sharing parking demand |
Biao XU( ),Qing-chang LU*( ) |
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China |
|
|
Abstract In order to reveal the spatiotemporal relationship between urban multi-dimensional features and bike-sharing parking demand and their associated scales, combined with multi-source data in Shanghai, a multiscale geographically and temporally weighted regression model constrained by riding distance (RD-MGTWR) was constructed to explore the spatiotemporal heterogeneity patterns of the impact of built environment and regional economic attributes on parking demand. The model comparison analysis shows that the MGTWR model exhibits better explanatory power and reliability than the geographically and temporally weighted regression model (GTWR), and the introduction of riding distance further improves the robustness of the MGTWR model. Results show that the scale of the positive impact of socioeconomic attributes on parking demand is global, while the negative impact of location conditions presents local heterogeneity, and is most significant in the inner ring central area during the commuter morning peak. In addition, bus station density, metro station density and shopping service facility density with micro-spatial or temporal scales have positive and negative effects on parking demand. The findings of the scale effect of influencing factors can help guide parking facility zoning development and bike sharing time-sharing scheduling.
|
Received: 24 May 2022
Published: 28 February 2023
|
|
Fund: 国家自然科学基金资助项目(71971029);陕西省自然科学研究基础研究计划资助项目(2021JC-28) |
Corresponding Authors:
Qing-chang LU
E-mail: 2020132086@chd.edu.cn;qclu@chd.edu.cn
|
共享单车停车需求的多尺度时空影响因素
为了揭示城市多维特征与共享单车停车需求的时空关系及其关联尺度,结合上海市多源数据,构建以骑行距离为约束的多尺度时空地理加权回归模型(RD-MGTWR)来探究建成环境和区域经济属性对停车需求影响的时空异质性模式. 模型对比分析表明,相比于时空地理加权回归模型(GTWR),MGTWR模型表现出更好的解释力和可靠性,骑行距离的引入也进一步提高了MGTWR模型的鲁棒性. 结果显示社会经济属性对停车需求的正向影响尺度具有全局性,而区位条件的负向影响呈现局部异质性,在通勤早高峰的内环中心区域最为显著. 此外,具有微观空间或时间作用尺度的公交站点密度、地铁站点密度和购物类服务设施密度对停车需求产生了正负向影响. 影响因素尺度效应的发现有助于指导停车设施的分区规划和共享单车的分时调度.
关键词:
共享单车,
停车需求,
建成环境,
骑行距离,
多尺度时空地理加权回归,
时空作用尺度
|
|
[1] |
BARBOUR N, ZHANG Y, MANNERING F A statistical analysis of bike sharing usage and its potential as an auto-trip substitute[J]. Journal of Transport and Health, 2019, 12: 253- 262
doi: 10.1016/j.jth.2019.02.004
|
|
|
[2] |
DU Y C, DENG F W, LIAO F X A model framework for discovering the spatio-temporal usage patterns of public free-floating bike-sharing system[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 39- 55
doi: 10.1016/j.trc.2019.04.006
|
|
|
[3] |
GU T Q, KIM I, CURRIE G Measuring immediate impacts of a new mass transit system on an existing bike-share system in China[J]. Transportation Research Part A: Policy and Practice, 2019, 124: 20- 39
doi: 10.1016/j.tra.2019.03.003
|
|
|
[4] |
SHEN Y, ZHANG X H, ZHAO J H Understanding the usage of dockless bike sharing in Singapore[J]. International Journal of Sustainable Transportation, 2018, 12 (9): 686- 700
doi: 10.1080/15568318.2018.1429696
|
|
|
[5] |
SHELAT S, HUISMAN R, VAN OORT N Analysing the trip and user characteristics of the combined bicycle and transit mode[J]. Research in Transportation Economics, 2018, 69: 68- 76
doi: 10.1016/j.retrec.2018.07.017
|
|
|
[6] |
HUA M Z, CHEN X W, ZHENG S J, et al Estimating the parking demand of free-floating bike sharing: a journey-data-based study of Nanjing, China[J]. Journal of Cleaner Production, 2020, 244: 118764
doi: 10.1016/j.jclepro.2019.118764
|
|
|
[7] |
艾媒咨询. 2017年共享单车夏季市场专题报告 [EB/OL]. (2017-06-16). https://www.iimedia.cn/c400/59210.html.
|
|
|
[8] |
万敏. 基于数据的共享单车需求预测和调度研究 [D]. 南京: 南京大学, 2020. WAN Min. Research on forecasting and scheduling of shared bicycle demand based on data [D]. Nanjing: Nanjing University, 2020.
|
|
|
[9] |
XU Y, CHEN D C, ZHANG X H, et al Unravel the landscape and pulses of cycling activities from a dockless bike-sharing system[J]. Computers, Environment and Urban Systems, 2019, 75: 184- 203
doi: 10.1016/j.compenvurbsys.2019.02.002
|
|
|
[10] |
ZHANG Y P, LIN D, MI Z F Electric fence planning for dockless bike-sharing services[J]. Journal of Cleaner Production, 2019, 206: 383- 393
doi: 10.1016/j.jclepro.2018.09.215
|
|
|
[11] |
GAO K, YANG Y, LI A Y, et al Spatial heterogeneity in distance decay of using bike sharing: an empirical large-scale analysis in Shanghai[J]. Transportation Research Part D: Transport and Environment, 2021, 94: 102814
doi: 10.1016/j.trd.2021.102814
|
|
|
[12] |
严亚磊, 于涛, 沈丽珍 共享单车出行的建成环境影响机制: 以上海市为例[J]. 上海城市规划, 2020, (6): 85- 91 YAN Ya-lei, YU Tao, SHEN Li-zhen The impact mechanism of built environment on shared bike travel: a case study of Shanghai[J]. Shanghai Urban Planning Review, 2020, (6): 85- 91
doi: 10.11982/j.supr.20200612
|
|
|
[13] |
WANG X Z, LINDSEY G, SCHONER J E, et al Modeling bike share station activity: effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2015, 142 (1): 04015001
|
|
|
[14] |
曹小曙, 罗依 中国大陆城市建成环境与共享单车配置的关系[J]. 中山大学学报:自然科学版, 2020, 59 (1): 77- 85 CAO Xiao-shu, LUO Yi Relationship between built environment and bikeshare allocation in the mainland of China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59 (1): 77- 85
|
|
|
[15] |
LI A Y, ZHAO P X, HUANG Y Z, et al An empirical analysis of dockless bike-sharing utilization and its explanatory factors: case study from Shanghai, China[J]. Journal of Transport Geography, 2020, 88: 102828
doi: 10.1016/j.jtrangeo.2020.102828
|
|
|
[16] |
MA X W, JI Y J, YUAN Y F, et al A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data[J]. Transportation Research Part A: Policy and Practice, 2020, 139: 148- 173
doi: 10.1016/j.tra.2020.06.022
|
|
|
[17] |
HUANG B, WU B, BARRY M Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24 (3): 383- 401
doi: 10.1080/13658810802672469
|
|
|
[18] |
WU C, REN F, HU W, et al Multiscale geographically and temporally weighted regression: exploring the spatiotemporal determinants of housing prices[J]. International Journal of Geographical Information Science, 2019, 33 (3): 489- 511
doi: 10.1080/13658816.2018.1545158
|
|
|
[19] |
上海统计局. 《2018年上海市国民经济和社会发展统计公报》[EB/OL]. (2019-03-01). http://tjj.sh.gov.cn/tjgb/20191115/0014-1003219.html?ivk_sa=1024320u.
|
|
|
[20] |
XING Y Y, WANG K, LU J J Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China[J]. Journal of Transport Geography, 2020, 87: 102787
doi: 10.1016/j.jtrangeo.2020.102787
|
|
|
[21] |
CRANEY T A, SURLES J G Model-dependent variance inflation factor cutoff values[J]. Quality Engineering, 2002, 14 (3): 391- 403
doi: 10.1081/QEN-120001878
|
|
|
[22] |
马新卫, 季彦婕, 金雪, 等 租赁自行车用户出行特征及方式的影响因素分析[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1202- 1209 MA Xin-wei, JI Yan-jie, JIN Xue, et al Analysis on travel characteristics of bike-sharing users andinfluence factors on way to travel[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1202- 1209
|
|
|
[23] |
FOTHERINGHAM A S, YANG W B, KANG W Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107 (6): 1247- 1265
doi: 10.1080/24694452.2017.1352480
|
|
|
[24] |
YU K, PARK B U, MAMMEN E Smooth backfitting in generalized additive models[J]. The Annals of Statistics, 2008, 36 (1): 228- 260
|
|
|
[25] |
GAO K, YANG Y, LI A Y, et al Quantifying economic benefits from free-floating bike-sharing systems: a trip-level inference approach and city-scale analysis[J]. Transportation Research Part A: Policy and Practice, 2021, 144: 89- 103
doi: 10.1016/j.tra.2020.12.009
|
|
|
[26] |
LIAO Y Ride-sourcing compared to its public-transit alternative using big trip data[J]. Journal of Transport Geography, 2021, 95: 103135
doi: 10.1016/j.jtrangeo.2021.103135
|
|
|
[27] |
FOTHERINGHAM A S, CRESPO R, YAO J Geographical and temporal weighted regression (GTWR)[J]. Geographical Analysis, 2015, 47 (4): 431- 452
doi: 10.1111/gean.12071
|
|
|
[28] |
MA X L, ZHANG J Y, DING C, et al A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership[J]. Computers, Environment and Urban Systems, 2018, 70: 113- 124
doi: 10.1016/j.compenvurbsys.2018.03.001
|
|
|
[29] |
YANG H T, ZHANG Y B, ZHONG L Z, et al Exploring spatial variation of bike sharing trip production andattraction: a study based on Chicago’s Divvy system[J]. Applied Geography, 2020, 115: 102130
doi: 10.1016/j.apgeog.2019.102130
|
|
|
[30] |
HAMPSHIRE R C, MARLA L. An analysis of bike sharing usage: explaining trip generation and attraction from observed demand [C]// 91st Annual Meeting of the Transportation Research Board. Washington, DC: TRB, 2012: 12-2099.
|
|
|
[31] |
莫海彤, 魏宗财, 翟青 老城区共享单车出行特征及影响因素研究: 以广州为例[J]. 南方建筑, 2019, (1): 7- 12 MO Hai-tong, WEI Zong-cai, ZHAI Qing Travel behaviors and influencing factors of bike sharing in old town: the case of Guangzhou[J]. South Architecture, 2019, (1): 7- 12
doi: 10.3969/j.issn.1000-0232.2019.01.007
|
|
|
[32] |
ZHANG Y, THOMAS T, BRUSSEL M, et al Exploring the impact of built environment factors on the use of publicbikes at bike stations: case study in Zhongshan, China[J]. Journal of Transport Geography, 2017, 58: 59- 70
doi: 10.1016/j.jtrangeo.2016.11.014
|
|
|
[33] |
TAN X Y, ZHU X L, LI Q, et al Tidal phenomenon of the dockless bike-sharing system and its causes: the case of Beijing[J]. International Journal of Sustainable Transportation, 2022, 16 (4): 287- 300
doi: 10.1080/15568318.2020.1871129
|
|
|
[34] |
高楹, 宋辞, 郭思慧, 等 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23 (1): 155- 170 GAO Ying, SONG Ci, GUO Si-hui, et al Spatial-temporal characteristics and influencing factors of source and sink of dockless sharing bicycles connected to subway stations[J]. Journal of Geo-Information Science, 2021, 23 (1): 155- 170
doi: 10.12082/dqxxkx.2021.200351
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|