Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2186-2193    DOI: 10.3785/j.issn.1008-973X.2021.11.020
    
Layout generation method of high-rise residential buildings based on AI in view of wind environment
Xiao-yu YING1,2(),Xiao-ying QIN1,Jia-hui CHEN1,Jing GAO1,Zi-qiao LIU1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. School of Engineering, Zhejiang University City College, Hangzhou 310015, China
Download: HTML     PDF(1216KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The automatic generation method and wind speed prediction technology of high-rise residential layout were studied, and the method of automatic generation, wind environment simulation and comparative optimization for high-rise residential area was developed. The fitness function and optimization goal of genetic algorithm were proposed, and the automatic generation algorithm of building layout was established, according to the data extraction of residential area and building regulations in Yangtze River Delta region of China. A computational fluid dynamics (CFD) proxy model based on fully convolutional neural networks (FCN) was constructed to obtain the wind speed distribution characteristics of optimal layout, based on the image learning characteristics of FCN. The optimization effect and wind environment prediction effect were analyzed, and results showed that the the error of the proposed method was within the effective range. In addition, compared with Phoenics, the proposed method can significantly reduce the wind environment simulation time, and effectively avoid the limitations of architects’ personal experience. This method can automatically learn scheme arrangement, quickly get the optimal solution of high-rise residential layout under specific plot ratio and plot conditions, and provide guidance for the performance of living environment in today’s fast-paced architectural design.



Key wordsartificial intelligence      outdoor wind environment      high-rise residential area      general layout      software development     
Received: 13 October 2020      Published: 05 November 2021
CLC:  TU 241  
  TU 98  
Fund:  国家自然科学基金资助项目(51878608);浙江省自然科学基金资助项目(LY18E080025)
Cite this article:

Xiao-yu YING,Xiao-ying QIN,Jia-hui CHEN,Jing GAO,Zi-qiao LIU. Layout generation method of high-rise residential buildings based on AI in view of wind environment. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2186-2193.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.020     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2186


风环境视野下基于AI的高层住宅总图生成方法

针对高层居住区布局的自动生成方法和风速预测技术进行研究,设计主要用于住宅布局自动生成、风环境性能模拟与对比寻优的方法. 根据中国长三角地区居住区数据提取和建筑法规,提出遗传算法的适应度函数和优化目标,建立建筑布局自动生成算法;利用全卷积神经网络 (FCN) 的图像学习特点,构建基于全卷积神经网络的计算流体动力学 (CFD) 代理模型,得到优化布局的风速分布特征. 实验结果表明,所提出方法的误差在有效范围内. 此外,相比传统风环境模拟软件Phoenics,所提出方法能显著降低风环境模拟耗时,并有效避免建筑师个人经验的局限性问题. 该方法可以自动学习方案排布,快速得出特定容积率与地块条件下高层住宅布局的最优解法,为当今快节奏的建筑设计提供人居环境性能方面的指导.


关键词: 人工智能,  室外风环境,  高层住宅区,  总图布局,  软件开发 
Fig.1 Flow chart of layout generation method of high-rise residential buildings based on AI in view of wind environment
Fig.2 Plans of sample residential areas in Yangtze river delta region
建筑类型 编号 平面尺寸/m 层数
板式住宅 B1 60×15 11
B2 40×15 18
B3 60×15 18
B4 40×15 30
B5 60×15 30
点式住宅 P1 20×15 11
P2 20×15 18
P3 20×15 30
Tab.1 Adopted building types
Fig.3 Group division plan of point-board mixed high-rise residential area
平面尺寸 层数 南北间距/m 东西间距/m
40 m×15 m 18 33.0 13.0
30 40.0 13.0
60 m×15 m 11 44.0 13.0
18 48.0 13.0
30 63.0 13.0
20 m×15 m 11 16.3 13.0
18 17.0 13.0
30 17.0 13.0
Tab.2 Distance between buildings of each building type
Fig.4 Measurement points location of prediction model
建筑类型 建筑编号 单位长/格 单位宽/格 高度/m
板式住宅 B1 12 3 33
B2 8 3 54
B3 12 3 54
B4 8 3 90
B5 12 3 90
点式住宅 P1 4 3 33
P2 4 3 54
P3 4 3 90
Tab.3 Sizes of residential buildings in matrix representation
Fig.5 Layout of buildings represented by matrix
Fig.6 Wind velocity profile represented by matrix
Fig.7 Network structure of CFD agent model based on FCN
Fig.8 Interface of generation software of high-rise residential layout
Fig.9 Interface of generation software of high-rise residential layout after calculation
风向 建筑类型 建筑编号 数量
北风 板式住宅 B1 0
B2 6
B3 7
B4 0
B5 0
点式住宅 P1 0
P2 6
P3 6
Tab.4 Building parameters used in experiment
Fig.10 Layout of sample model before optimization
Fig.11 Layout of sample model optimized by genetic algorithm
Fig.12 Change trend of MSE during model training
[1]   李若尧, 基于风环境质量的城市住区更新潜力分析[D]. 南京: 南京大学, 2018.
LI Ruo-yao. Urban residential area renewal potential analysis on wind environmental quality[D]. Nanjing: Nanjing University, 2018.
[2]   LITTLEFAIR P J, SANTAMOURIS M, ALVAREZ S. Environmental site layout planning: solar access, microclimate and passive cooling in urban areas[M]. London: BRE Publications, 2000.
[3]   应小宇, 阚琪, 任昕 风环境视野下高层建筑群朝向: 以杭州钱江新城四季青路地块为例[J]. 西安建筑科技大学学报:自然科学版, 2018, 50 (6): 884- 889
YING Xiao-yu, KAN Qi, REN Xin Design analysis of high-rise buildings in the view of wind environment: a case study of four seasons green block in Hangzhou Qianjiang new city[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2018, 50 (6): 884- 889
[4]   周莉, 席光 高层建筑群风场的数值分析[J]. 西安交通大学学报, 2001, 35 (5): 471- 474
ZHOU Li, XI Guang Numerical analysis of wind field in high-rise buildings[J]. Journal of Xi'an Jiaotong University, 2001, 35 (5): 471- 474
doi: 10.3321/j.issn:0253-987X.2001.05.008
[5]   单琪雅. 严寒地区住区高层建筑布局形态对风环境的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016.
SHAN Qi-ya. The influence of residential high-rise building layout on wind environment in cold region[D]. Harbin: Harbin Institute of Technology, 2016.
[6]   杨丽. 绿色建筑设计: 建筑风环境[M]. 上海: 同济大学出版社, 2014.
[7]   杨丽, 宋德萱 居住区规划中建筑平面空间组合与风环境的关系研究[J]. 住宅科技, 2013, 33 (2): 1- 6
YANG Li, Song De-xuan The study on the relation between spatial combination of building plane and wind environment in residential district planning[J]. Housing Technology, 2013, 33 (2): 1- 6
doi: 10.3969/j.issn.1002-0454.2013.02.001
[8]   张圣武. 基于数值模拟的杭州住区风环境分析研究[D]. 杭州: 浙江大学, 2016.
ZHANG Sheng-wu. Research on wind environment of residential districts in Hangzhou based on numerical simulation[D]. Hangzhou: Zhejiang University, 2016.
[9]   HANG J, LI Y, SANDBERG M Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99 (10): 1036- 1055
doi: 10.1016/j.jweia.2011.07.004
[10]   王美琪. 基于户外空间优化的中高强度住区规划布局研究[D]. 南京: 东南大学, 2018.
WANG Mei-qi. Research on the planning and layout of middle and high intensity residential areas based on optimization of outdoor space[D]. Nanjing: Southeast University, 2018.
[11]   王巧雯, 汪磊磊 基于室外风环境CFD模拟的住宅小区设计策略[J]. 新建筑, 2018, 5: 69- 71
WANG Qiao-wen, WANG Lei-lei Design strategy of residential quarters based on CFD simulation of outdoor wind environment[J]. New Architecture, 2018, 5: 69- 71
doi: 10.12069/j.na.201802013
[12]   李梦雯, 南京居住区建筑群体空间形态对风环境的影响研究[D]. 南京: 东南大学, 2016.
LI Meng-wen. The study on effect of architecture apace form on wind environment in Nanjing residential districts[D]. Nanjing: Southeast University, 2016.
[13]   余波. 基于室外风环境优化的厦门地区高层住区布局模式初探[D]. 厦门: 厦门大学, 2017.
YU Bo. Preliminary study on high-rise residential layout patterns based on wind environment optimization in Xiamen[D]. Xiamen: Xiamen University, 2017.
[14]   刘宇鹏, 虞刚 基于遗传算法的形态与微气候环境性能自动优化方法[J]. 中外建筑, 2018, (6): 71- 74
LIU Yu-peng, YU Gang The automatic optimizing method of morphology and microclimate environmental performance based on genetic algorithm[J]. Chinese and Foreign Architecture, 2018, (6): 71- 74
[15]   刘宇鹏. 基于微气候性能驱动的寒地城市形态自动优化方法研究[D]. 南京: 东南大学, 2018.
LIU Yu-peng. The automatic optimizing method of the urban forms in cold regions based on micro-climate environments performance-driven[D]. Nanjing: Southeast University, 2018.
[16]   刘斅聪. 风寒性能导向下的寒地建筑室外风环境多目标优化设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LIU Yin-cong. Research on multi-objective optimization of outdoor wind environment of buildings in cold region driven by wind chill performance[D]. Harbin: Harbin Institute of Technology, 2020.
[17]   中华人民共和国住房和城乡建设部. 建筑设计防火规范: GB 50016—2018 [S]. 北京: 中国计划出版社, 2018.
[18]   中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
[19]   孙澄, 曲大刚, 黄茜 人工智能与建筑师的协同方案创作模式研究: 以建筑形态的智能化设计为例[J]. 建筑学报, 2020, 2: 74- 78
SUN Cheng, QU Da-gang, HUANG Qian Towards AI-architect interactive and collaborative architectural design: a case study of intelligent stylization of building shape[J]. Architecture Journal, 2020, 2: 74- 78
[20]   STATHOPOULOS T, BASKARAN A Computer simulation of wind environment conditions around buildings[J]. Engineering Structures, 1996, 18 (11): 876- 885
doi: 10.1016/0141-0296(95)00155-7
[21]   席睿. 基于合理静风区面积比的居住区布局研究[D]. 重庆: 重庆大学, 2017.
XI Rui. Study on residential area layout based on reasonable silent areas[D]. Chongqing: Chongqing University, 2017.
[1] Zhuang KANG,Jie YANG,Hao-qi GUO. Automatic garbage classification system based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1272-1280.
[2] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.