Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (8): 1637-1644    DOI: 10.3785/j.issn.1008-973X.2020.08.024
    
Generalized form of interpolation-supplemented lattice Boltzmann method for computational aeroacoustics
Wan-hong LIU1(),Rong-qian CHEN1,2,*(),Ruo-fan QIU1,Wei LIN1,Yan-cheng YOU1
1. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
2. Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, China
Download: HTML     PDF(5742KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The generalized form of interpolation-supplemented lattice Boltzmann method (GILBM) was proposed for aeroacoustics simulation on non-uniform meshes. The correctness of GILBM code was validated by simulating the lid-driven cavity flow and the low Reynolds number cylinder flow. On this basis, this method was applied to simulate the Gaussian pulse propagation, acoustic periodic point sources and aerodynamic noise of two-dimensional cylinder flow. Results show that the propagation process of Gaussian pulse and acoustic periodic point sources can be well simulated on non-uniform meshes by GILBM, and the simulation results are in good agreement with the analytical solution. Also, the generation and propagation of the aerodynamic noise produced by the vortex shedding generated by a cylinder can be simulated on non-uniform body-fitted mesh by GILBM, and the sound pressure propagation in the near field and the far field can be well captured. The aerodynamic noise characteristics of flow around a cylinder show a dipole pattern. Results present a good agreement with the references, which confirms the correctness and the feasibility of GILBM in simulating sound propagation problems and aerodynamic noise on non-uniform meshes.



Key wordslattice Boltzmann method      generalized form of interpolation-supplemented lattice Boltzmann method      aeroacoustics      non-uniform mesh      cylinder noise     
Received: 03 June 2019      Published: 28 August 2020
CLC:  V 211.3  
Corresponding Authors: Rong-qian CHEN     E-mail: 35020171150897@stu.xmu.edu.cn;rqchen@xmu.edu.cn
Cite this article:

Wan-hong LIU,Rong-qian CHEN,Ruo-fan QIU,Wei LIN,Yan-cheng YOU. Generalized form of interpolation-supplemented lattice Boltzmann method for computational aeroacoustics. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1637-1644.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.08.024     OR     http://www.zjujournals.com/eng/Y2020/V54/I8/1637


通用的插值补充格子Boltzmann方法应用于计算气动声学

提出将通用的插值补充格子Boltzmann方法(GILBM)应用于非均匀网格进行计算气动声学研究. 通过顶盖驱动方腔流、低雷诺数圆柱绕流算例验证GILBM数值模拟方法的正确性. 在此基础上,将该方法应用于高斯脉冲传播、周期性声源传播、二维圆柱绕流的气动噪声计算. 研究结果表明,GILBM方法可以在非均匀网格上较好地模拟高斯脉冲及周期性声源声波的传播过程,计算结果与解析解较吻合. GILBM方法能够模拟非均匀贴体网格下的圆柱曲面边界由于涡脱落造成的气动噪声的产生和传播过程,可以较好地捕捉到近场及远场的声压传播. 圆柱绕流声学特性呈现出偶极子现象,计算结果与参考文献较吻合,证明采用GILBM方法在非均匀网格中模拟声传播问题的正确性及求解气动声学问题的可行性.


关键词: 格子Boltzmann方法,  通用的插值补充格子Boltzmann方法,  气动声学,  非均匀网格,  圆柱噪声 
Fig.1 Computational grid of lid-driven cavity
Fig.2 Dimensionless velocity profiles along centrelines
Fig.3 Schematic diagram and computational grid of cylinder model
Fig.4 Pressure distribution coefficient of cylinder surface for different Reynolds numbers
Fig.5 Computational model and computational grid of 2D Gaussian pulse
Fig.6 Contours and curves of density for different horizontal velocities at $t = 0.4$
Fig.7 Contour and cross-profile of density fluctuation at $t = 75$
Fig.8 Time-averaged pressure distribution of cylinder surface for Re of 150
Fig.9 Lift coefficient of cylinder and acoustic pressure fluctuation of monitor
Fig.10 Aerodynamic noise characteristics of flow around a cylinder
[1]   MARIé S, RICOT D, SAGAUT P Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2009, 228 (4): 1056- 1070
doi: 10.1016/j.jcp.2008.10.021
[2]   KAM E W S, LEUNG R C K, SO R M C, et al A lattice Boltzmann method for computation of aeroacoustic interaction[J]. International Journal of Modern Physics C, 2007, 18 (4): 463- 472
doi: 10.1142/S0129183107010693
[3]   VIGGEN E M. The lattice Boltzmann methods with applications in acoustics [D]. Trondheim: Norwegian University of Science and Technology, 2009.
[4]   VIGGEN E M Acoustic multipole sources for the lattice Boltzmann method[J]. Physical Review E, 2013, 87 (2): 023306
doi: 10.1103/PhysRevE.87.023306
[5]   王勇, 何雅玲, 刘迎文, 等 声波衰减的格子-Boltzmann 方法模拟[J]. 西安交通大学学报, 2007, 41 (1): 5- 8
WANG Yong, HE Ya-ling, LIU Ying-wen, et al Simulation on attenuation of sound waves with lattice-Boltzmann method[J]. Journal of Xi’an Jiaotong University, 2007, 41 (1): 5- 8
doi: 10.3321/j.issn:0253-987X.2007.01.002
[6]   司海青, 石岩, 王兵, 等 基于格子Boltzmann方法的气动声学计算[J]. 南京航空航天大学学报, 2013, 45 (5): 616- 620
SI Hai-qing, SHI Yan, WANG Bing, et al Computational aeroacoustics based on lattice Boltzmann method[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45 (5): 616- 620
doi: 10.3969/j.issn.1005-2615.2013.05.007
[7]   SI H Q, WANG B, SHI Y, et al. Aero-acoustics computations of square cylinder using the latticeBoltzmann method [J]. Applied Mechanics and Materials. 2014, 444-445: 400-405.
[8]   邵卫东, 李军 计算气动声学中的伽辽金玻尔兹曼方法研究[J]. 西安交通大学学报, 2016, 50 (3): 134- 140
SHAO Wei-dong, LI Jun Study on the Galerkin Boltzmann method for computational aeroacoustics[J]. Journal of Xi’an Jiaotong University, 2016, 50 (3): 134- 140
[9]   李凯. 可压缩格子Boltzmann 方法研究[D]. 西安: 西北工业大学, 2016.
LI Kai. Study on the compressible lattice Boltzmann method [D]. Xi’an: Northwestern Polytechnical University, 2016.
[10]   江茂强, 张瑞, 柳朝晖 求解复杂边界的直接力浸入边界-格子Boltzmann耦合方法[J]. 工程热物理学报, 2018, 39 (12): 139- 144
JIANG Mao-qiang, ZHANG Rui, LIU Zhao-hui Direct forcing immersed boundary-lattice Boltzmann coupling method for solving fluid structure interaction with complex boundary[J]. Journal of Engineering Thermophysics, 2018, 39 (12): 139- 144
doi: 10.1007/s10765-018-2458-0
[11]   CHEN L, YU Y, LU J, et al A comparative study of lattice Boltzmann methods using bounce: back schemes and immersed boundary ones for flow acoustic problems[J]. International Journal for Numerical Methods in Fluids, 2014, 74 (6): 439- 467
doi: 10.1002/fld.3858
[12]   周昊, 芮淼, 岑可法 多孔介质内流体流动的大涡格子Boltzmann方法研究[J]. 浙江大学学报: 工学版, 2012, 46 (9): 1660- 1665
ZHOU Hao, RUI Miao, CEN Ke-fa Study of flow in proous media by LES-LBM coupling method[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1660- 1665
[13]   IMAMURA T, SUZUKI K, NAKAMURA T, et al Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method[J]. Journal of Computational Physics, 2005, 202 (2): 645- 663
doi: 10.1016/j.jcp.2004.08.001
[14]   李维仲, 冯玉静, 董波, 等 直角和贴体坐标系下两种格子Boltzmann方法的比较研究[J]. 计算力学学报, 2014, (3): 357- 362
LI Wei-zhong, FENGN Yu-jing, DONG Bo, et al Comparison of two lattice Boltzmann Schemes in Cartesian coordinate and body-fitted coordinate system[J]. Chinese Journal of Computational Mechanics, 2014, (3): 357- 362
doi: 10.7511/jslx201403013
[15]   何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.
[16]   HE X, DOOLEN G Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder[J]. Journal of Computational Physics, 1997, 134 (2): 306- 315
doi: 10.1006/jcph.1997.5709
[17]   GHIA U, GHIA K N, SHIN C T High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [J]. Journal of Computational Physics, 1982, 48 (3): 387- 411
doi: 10.1016/0021-9991(82)90058-4
[18]   XU H, SAGAUT P Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2011, 230 (13): 5353- 5382
doi: 10.1016/j.jcp.2011.03.040
[19]   INOUE O, HATAKEYAMA N Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471: 285- 314
doi: 10.1017/S0022112002002124
[20]   LAFITTE A, PEROT F. Investigation of the noise generated by cylinder flows using a direct lattice-Boltzmann approach [C] // 30th AIAA Aeroacoustics Conference. Miami: AIAA, 2009: 3268.
[1] Yang GAO,Cheng-gang FANG,Xian-hui JIANG. Analysis of slurry flow in cement 3D printing nozzle[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 420-426.
[2] ZHOU Hao, RUI Miao, CEN Ke-fa. Study of flow in porous media by LES-LBM coupling method[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1660-1665.
[3] NIE De-Meng, LIN Jian-Zhong. Lattice Boltzmann model for particle Brownian motion[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1438-1442.