Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (8): 1628-1636    DOI: 10.3785/j.issn.1008-973X.2020.08.023
    
MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage
Wang-yu REN(),Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN*()
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1274KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

MoS2/B-doped graphene composites (MoS2/BG) were prepared by one-step hydrothermal method, in order to develop high-efficiency and low-cost electrocatalyst for hydrogen evolution reaction (HER) and high-performance lithium storage electrode material. Results show that the poor-stacked MoS2nanosheets with more disordered structures and expanded interlayer distance are well dispersed on the surface of B-doped graphene sheets. MoS2/BG composite shows high electrocatalytic activity with low Tafel slope (46.3 mV/dec) as HER electrocatalyst. MoS2/BG composite shows excellent lithium storage performance as a lithium storage electrode material. It can exhibit a reversible capacity as high as 1 205 mA·h/g with stable cycle performance and significantly enhanced high rate capability. The excellent electrochemical performance of MoS2/BG composite is due to the fact that boron doping modifies the electronic and surface properties of graphene, and the poor-stacked MoS2layers with more disordered structures are uniformly dispersed on the surface of B-doped graphene, which not only increases the active sites for HER and electrochemical lithium storage capability, but also reduces the electron transfer impedance of the electrode reaction, leading to the enhancement of electrode reaction kinetics.



Key wordsmolybdenum disulfide (MoS2)      graphene      electrocatalyst      hydrogen evolution reaction (HER)      electrochemical lithium storage     
Received: 18 December 2019      Published: 28 August 2020
CLC:  TTQ 152  
  TM 911  
Corresponding Authors: Wei-xiang CHEN     E-mail: 644890828@qq.com;weixiangchen@zju.edu.cn
Cite this article:

Wang-yu REN,Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN. MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1628-1636.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.08.023     OR     http://www.zjujournals.com/eng/Y2020/V54/I8/1628


MoS2/硼掺杂石墨烯的电化学析氢和储锂性能

为了研发高效低成本的析氢反应(HER)电催化剂和高性能的电化学储锂电极材料,通过一步水热法制备MoS2/硼掺杂石墨烯(MoS2/BG)复合材料. 结果表明,少堆积MoS2纳米片均匀地分散在硼掺杂石墨烯上,并具有较多的无序结构和扩大的层间距. 作为析氢反应电催化剂,MoS2/BG复合材料表现出较高的电催化活性和较低的Tafel斜率(46.3 mV/dec);作为电化学储锂电极材料,MoS2/BG复合材料表现出优异的电化学储锂性能,可逆比容量为1 205 mA·h/g,并具有稳定的循环性能和显著增强的高倍率特性. MoS2/BG复合材料电化学性能优异是由于硼掺杂改变石墨烯的电子性质和表面特性,以及无序结构较多的弱堆积MoS2层均匀地分散在硼掺杂石墨烯表面,增加电催化析氢反应的活性位点和电化学储锂能力,降低电极反应的电子转移阻抗,增强电极反应的动力学性能.


关键词: 二硫化钼(MoS2),  石墨烯,  电催化,  析氢反应,  电化学储锂 
Fig.1 XRD patterns of different samples
Fig.2 SEM images of different samples
Fig.3 TEM/HRTEM images of different samples
Fig.4 XPS of MoS2/BG-2 composite
Fig.5 Polarization curves, Tafel slopes and EIS plots of HER on different catalyst electrodes
电极 Rs Rct
MoS2 3.2 1 131
MoS2/G 4.3 339
MoS2/BG-1 4.8 104
MoS2/BG-2 3.6 87
MoS2/BG-5 4.5 152
Tab.1 Kinetic parameters obtained by date fitting of EIS
Fig.6 Charge-discharge curves of different composite electrodes for first three cycles at 100 mA/g
Fig.7 Cycling behavior of different composite electrodes and their rate capability
[1]   YAN Y, XIA B Y, GE X M, et al Ultrathin MoS2nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution [J]. ACS Applied Materials and Interfaces, 2013, 5 (24): 12794- 12798
doi: 10.1021/am404843b
[2]   DU G D, GUO Z P, WANG S Q, et al Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communications, 2010, 46 (7): 1106- 1108
doi: 10.1039/B920277C
[3]   XIAO J, CHOI D W, COSIMBESCU L, et al Exfoliated MoS2 nanocomposite as an anode material forlithium ion batteries [J]. Chemistry of Materials, 2010, 22 (16): 4522- 4524
doi: 10.1021/cm101254j
[4]   LI Y G, WANG H L, XIE L M, et al MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2011, 133 (19): 7296- 7299
doi: 10.1021/ja201269b
[5]   CHANG K, CHEN W X L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries [J]. ACS Nano, 2011, 5 (6): 4720- 4728
doi: 10.1021/nn200659w
[6]   YAN Y, GE X M, LIU Z L, et al Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction [J]. Nanoscale, 2013, 5 (17): 7768- 7771
doi: 10.1039/c3nr02994h
[7]   侯世成, 任王瑜, 朱清, 等 Ni 掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性 [J]. 浙江大学学报:工学版, 2019, 53 (8): 1610- 1617
HOU Shi-cheng, REN Wang-yu, ZHU Qing, et al Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction [J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1610- 1617
[8]   DUAN J J, CHEN S, JARONIEC M, et al Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catalysis, 2015, 5 (9): 5207- 5234
doi: 10.1021/acscatal.5b00991
[9]   REN X P, REN X D, PANG L Q, et al MoS2/sulfur and nitrogen co-doped reduced graphene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy, 2016, 41 (2): 916- 923
doi: 10.1016/j.ijhydene.2015.11.114
[10]   YE J B, YU Z T, CHEN W X, et al Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage[J]. Carbon, 2016, 107: 711- 722
doi: 10.1016/j.carbon.2016.06.074
[11]   HAN J, ZHANG L L, LEE S, et al Generation of b-doped graphene nanoplatelets using a solution process and their supercapacitor applications[J]. ACS Nano, 2013, 7 (1): 19- 26
doi: 10.1021/nn3034309
[12]   SHENG Z H, GAO H L, BAO W J, et al Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J]. Journal of Materials Chemistry, 2012, 22 (2): 390- 395
doi: 10.1039/C1JM14694G
[13]   KONG X K, HUANG Y M, LIU Q C Two-dimensional boron-doped graphyne nanosheet: a new metal-free catalyst for oxygen evolution reaction[J]. Carbon, 2017, 123: 558- 564
doi: 10.1016/j.carbon.2017.08.003
[14]   SAHOO M, SREENA K P, VINAYAN B P, et al Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Materials Research Bulletin, 2015, 61: 383- 390
doi: 10.1016/j.materresbull.2014.10.049
[15]   SATHE B R, ZOU X X, ASEFA T Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction[J]. CatalysisScience and Technology, 2014, 4 (7): 2023- 2030
doi: 10.1039/C4CY00075G
[16]   YE J B, YU Z T, CHEN W X, et al Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: an enhanced electrochemical hydrogen evolution catalyst[J]. International Journal of Hydrogen Energy, 2016, 41 (28): 12049- 12061
doi: 10.1016/j.ijhydene.2016.05.186
[17]   PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K, et al Synthesis, structure, and properties of boron- and nitrogen-doped graphene[J]. Advanced Materials, 2009, 21: 4726- 4730
[18]   WANG Q, XIE Z Y, LIANG Y L, et al Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance[J]. Ionic, 2019, 25 (5): 2111- 2119
doi: 10.1007/s11581-018-2647-7
[19]   侯世成, 任王瑜, 朱清, 等 Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性 [J]. 浙江大学学报: 工学版, 2019, 53 (8): 1610- 1617
HOU Shi-cheng, REN Wang-yu, ZHU Qing, et al Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction [J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1610- 1617
doi: 10.3785/j.issn.1008-973X.2019.08.020
[20]   WANG D Z, ZHANG X Y, BAO S Y, et al Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution [J]. Journal of Materials Chemistry A, 2017, 5 (6): 2681- 2688
doi: 10.1039/C6TA09409K
[1] Zhi-qiang WU,Jun WEI,Rong-zhen DONG. Graphene-based piezoresistive composite and application in crack monitoring[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 233-240.
[2] Shi-cheng HOU,Wang-yu REN,Qing ZHU,Wei-xiang CHEN. Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1610-1617.
[3] Qing ZHU,Wang-yu REN,Xiao-nan JIANG,Wei-xiang CHEN. Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1306-1314.
[4] XIAO Bing-gang, XIE Zhi-yi, SUN Run-liang. Design and analysis of graphene-based isolator[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 42-47.
[5] WANG Xiao,YAO Xiao-li,HOU Jian-feng,FAN Li-wu,XU Xu,YU Zi-tao,HU Ya-cai. Non-isothermal crystallization of aqueous graphene oxide suspensions[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1272-1277.
[6] DIAO Jie, HUANG Sai-Yu, CHEN Wei-Xiang. Synthesis of PtRu/C and PtNi/C catalysts and their electrocatalytic performance for methanol electrooxidatio[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 962-967.