Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 767-777    DOI: 10.3785/j.issn.1008-973X.2020.04.016
Civil Engineering, Traffic Engineering     
Seismic vulnerability of urban double-layer interdependent lifeline network
Xu-dong ZHAO(),Zhi-long CHEN*(),Ji-heng XU,Hai-zhou TANG
State Key Laboratory of Explosion and Impact and Disaster Prevention and Mitigation, Army Engineering University, Nanjing 210007, China
Download: HTML     PDF(1161KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Probabilistic vulnerability simulation model of network performance and joint probability method of seismic failure and cascading failure of interdependent units were established focusing on the double-layer interdependent lifeline networks. Then a research framework was proposed to analyze the seismic vulnerability of double-layer interdependent lifeline networks. Then probabilistic vulnerability analysis of the performance of urban double-layer interdependent lifeline networks was conducted. A simulation procedure was constructed according to the framework to obtain the probabilistic vulnerability curves of double-layer interdependent lifeline networks under scenario earthquake in the case study of interdependent power-gas supply networks in a city of east China. Results show that power supply network is more likely to suffer medium performance loss under scenario earthquake, while gas supply network is more likely to suffer severe performance loss. The probability of severe performance loss of gas supply network apparently increases with the interdependence intension. The power supply network and gas supply network both have weaknesses in unit seismic fortification and network structure. These shortages are the main reasons of performance loss and should be well settled in the future municipal planning.



Key wordsearthquake      lifeline      vulnerability      interdependence      cascading failure     
Received: 25 March 2019      Published: 05 April 2020
CLC:  TU 982  
Corresponding Authors: Zhi-long CHEN     E-mail: wxlmss@163.com;chen-zl@vip.163.com
Cite this article:

Xu-dong ZHAO,Zhi-long CHEN,Ji-heng XU,Hai-zhou TANG. Seismic vulnerability of urban double-layer interdependent lifeline network. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 767-777.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.016     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/767


地震灾害下城市双层关联生命线网络易损性

以双层关联生命线网络为对象,建立生命线网络性能概率易损性仿真模型和关联单元震害和级联失效联合概率方法,形成地震灾害下双层关联生命线网络易损性研究框架,开展地震灾害下城市双层关联生命线网络性能的概率易损性分析. 在以华东某市电力和燃气关联网络为例的案例研究中,依据研究框架构建仿真流程,得到场景地震下双层关联生命线网络性能的概率易损性曲线. 结果显示,场景地震下,案例电力网络发生中度性能损失的概率较大,燃气网络发生重度性能损失的概率较大,燃气网络性能重度损失的概率随着关联强度的增强而明显增大. 电力网络和燃气网络均在单元抗震和网络布局上存在薄弱点,是2个网络发生性能损失的重要原因,应在后续规划中改进.


关键词: 地震,  生命线,  易损性,  关联,  级联失效 
Fig.1 Probabilistic vulnerability model for overall performance of lifeline network
Fig.2 General framework to analyze seismic vulnerability of double-layer interdependent lifeline networks
Fig.3 Graphical representation of power supply network in case study
Fig.4 Graphical representation of gas supply network in case study
燃气源点 节点类型 关联电力节点 节点类型
32 分输站 3 中低压变电站
44 储配站 11 中低压变电站
46 分输站 12 中低压变电站
55 储配站 22 中低压变电站
61 分输站 21 中低压变电站
Tab.1 Interdependent relationship between power supply network and gas supply network in case study
Fig.5 Simulation procedure for analyzing seismic vulnerability of double-layer interdependent lifeline network
Fig.6 Vulnerability curve of power supply network under seismic hazard
网络性能损失程度 SL P
轻微(Slight) 0%<SL≤25% 0.110
轻度(Moderate) 25%<SL≤50% 0.315
中度(Medium) 50%<SL≤75% 0.400
重度(Extensive) 75%<SL≤100% 0.175
Tab.2 Probability of different damage degree of power supply network under seismic hazard
Fig.7 Vulnerability curve of gas supply network under seismic hazard(for different correlation intension αij
Fig.8 Fig.8 Probability of different damage degree of gas supply network under seismic hazard(for different correlation intension αij
[1]   MOTEFF J, COPELAND C, FISCHER J. Critical infrastructures: what makes an infrastructure critical [R]. Washington DC: Congressional Research Service, 2002.
[2]   ZHAO B, TAUCER F Performance of infrastructure during the May 12, 2008 Wenchuan earthquake in China[J]. Journal of Earthquake Engineering, 2010, 14 (4): 578- 600
doi: 10.1080/13632460903274053
[3]   KOBAYASHI M Experience of infrastructure damage caused by the great east Japan earthquake and countermeasures against future disasters[J]. IEEE Communications Magazine, 2014, 52 (3): 23- 29
doi: 10.1109/MCOM.2014.6766080
[4]   YEH H, SATO S, TAJIMA Y The 11 March 2011 east Japan earthquake and tsunami: tsunami effects on coastal infrastructure and buildings[J]. Pure and Applied Geophysics, 2013, 170 (6–8): 1019- 1031
[5]   SINGH S K, REINOSO E, ARROYO D Deadly intraslab Mexico earthquake of 19 September 2017(M-w 7.1): ground motion and damage pattern in Mexico City[J]. Seismological Research Letters, 2018, 89 (6): 2193- 2203
doi: 10.1785/0220180159
[6]   CASTALDO P, CAVALERI L, DI-TRAPANI F Seismic vulnerability of structures and infrastructures: strategies for assessment and mitigation[J]. Ingegneria Sismica, 2017, 34 (3): 3
[7]   GAUTAM D, DONG Y Multi-hazard vulnerability of structures and lifelines due to the 2015 Gorkha earthquake and 2017 central Nepal flash flood[J]. Journal of Building Engineering, 2018, 17: 196- 201
doi: 10.1016/j.jobe.2018.02.016
[8]   JENELIUS E, PETERSEN T, MATTSSON L G Importance and exposure in road network vulnerability analysis[J]. Transportation Research Part a: Policy and Practice, 2006, 40 (7): 537- 560
doi: 10.1016/j.tra.2005.11.003
[9]   MENONI S, PERGALANI F, BONI M P, et al Lifelines earthquake vulnerability assessment: a systemic approach[J]. Soil Dynamics and Earthquake Engineering, 2002, 22 (9-12): 1199- 1208
[10]   PITILAKIS K, ALEXOUDI M, ARGYROUDIS S, et al Earthquake risk assessment of lifelines[J]. Bulletin of Earthquake Engineering, 2006, 4 (4): 365- 390
doi: 10.1007/s10518-006-9022-1
[11]   IMAI T, WADA S, KOIKE T Seismic risk assessment and mitigation for the existing lifeline[J]. Journal of Earthquake and Tsunami, 2011, 5 (1): 31- 45
doi: 10.1142/S1793431111001108
[12]   BRUNEAU M, CHANG S E, EGUCHI R T, et al A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19 (4): 733- 752
doi: 10.1193/1.1623497
[13]   李强, 陈志龙, 赵旭东 地震灾害下城市生命线体系恢复力双维度综合评估[J]. 土木工程学报, 2017, 50 (2): 65- 72
LI Qiang, CHEN Zhi-long, ZHAO Xu-dong Seismic resilience assessment of urban lifeline systems: a double-dimensional approach[J]. China Civil Engineering Journal, 2017, 50 (2): 65- 72
[14]   CIMELLARO G P, REINHORN A M, BRUNEAU M Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32 (11): 3639- 3649
doi: 10.1016/j.engstruct.2010.08.008
[15]   ZHAO X D, CAI H, CHEN Z L, et al Assessing urban lifeline systems immediately after seismic disaster based on emergency resilience[J]. Structure and Infrastructure Engineering, 2016, 12 (12): 1636- 1651
[16]   赵旭东, 陈志龙, 蔡浩, 等 城市关键基础设施体系毁伤恢复力评估方法研究[J]. 兵工学报, 2016, 37 (Suppl.1): 101- 108
ZHAO Xu-dong, CHEN Zhi-long, CAI Hao, et al Resilience assessment of urban critical infrastructure systems[J]. Acta Armamentarii, 2016, 37 (Suppl.1): 101- 108
[17]   ZHAO X D, CHEN Z L, GONG H D Effects comparison of different resilience enhancing strategies for municipal water distribution network: a multidimensional approach[J]. Mathematical Problems in Engineering, 2015, 438063: 1- 16
[18]   OUYANG M, DUENAS-OSORIO L, MIN X A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36–37: 23- 31
[19]   赵旭东, 陈志龙, 龚华栋, 等 关键基础设施体系灾害毁伤恢复力研究综述[J]. 土木工程学报, 2017, 50 (12): 62- 71
ZHAO Xu-dong, CHEN Zhi-long, GONG Hua-dong, et al Review on the study of disaster resilience of critical infrastructure systems[J]. China Civil Engineering Journal, 2017, 50 (12): 62- 71
[20]   HOLMGREN A J Using graph models to analyze the vulnerability of electric power networks[J]. Risk Analysis, 2006, 26 (4): 955- 969
doi: 10.1111/j.1539-6924.2006.00791.x
[21]   BERDICA K An introduction to road vulnerability: what has been done, is done and should be done[J]. Transport Policy, 2002, 9 (2): 117- 127
doi: 10.1016/S0967-070X(02)00011-2
[22]   HAIMES Y Y On the definition of vulnerabilities in measuring risks to infrastructures[J]. Risk Analysis, 2006, 26 (2): 293- 296
doi: 10.1111/j.1539-6924.2006.00755.x
[23]   HAIMES Y Y Responses to Terjeaven’s paper: on some recent definitions and analysis frameworks for risk, vulnerability and resilience[J]. Risk Analysis, 2011, 31 (5): 689- 692
doi: 10.1111/j.1539-6924.2011.01587.x
[24]   BURITICA J A M, SANCHEZ-SILVA M, TESFAMARIAM S Hierarchical seismic vulnerability assessment of power transmission systems: sensitivity analysis of fragility curves and clustering algorithms[J]. Canadian Journal of Civil Engineering, 2017, 44 (2): 80- 89
doi: 10.1139/cjce-2015-0411
[25]   YIGIT A, LAV M A, GEDIKLI A Vulnerability of natural gas pipelines under earthquake effects[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9 (1): 04017036
doi: 10.1061/(ASCE)PS.1949-1204.0000295
[26]   DUE?AS-OSORIO L, CRAIG J I, GOODNO B J, et al Interdependent response of networked systems[J]. Journal of Infrastructure Systems, 2007, 13 (3): 185- 194
doi: 10.1061/(ASCE)1076-0342(2007)13:3(185)
[27]   CHANG S E, MCDANIELS T L, MIKAWOZ J, et al Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm[J]. Natural Hazards, 2007, 41 (2): 337- 358
doi: 10.1007/s11069-006-9039-4
[28]   赵文武, 伍国正 我国南方冰雪灾害的特征与城市救灾对策研究[J]. 中国安全科学学报, 2008, (10): 5- 9
ZHAO Wen-wu, WU Guo-zheng Characteristics of snow disasters in south china and countermeasures for urban disaster relief[J]. China Safety Science Journal, 2008, (10): 5- 9
[29]   FEMA. Multi-hazard loss estimation methodology, earthquake model (HAZUS-MH MR4) [R]. Washington DC: FEMA, 2003.
[30]   RINALIDI S M, PEERENBOOM J P, KELLY T Identifying, understanding and analyzing critical infrastructure interdependencies[J]. IEEE Control System Magazine, 2001, 21 (6): 11- 25
doi: 10.1109/37.969131
[31]   CHANG S E, MCDANELS T, BEAUBIEN C. Societal impacts of infrastructure failure interdependencies: building an empirical knowledge base [C] // proceedings of the 2009 Technical Council on Lifeline Earthquake Engineering Conference. Oakland: TCLEE, 2009: 693–702.
[32]   MCDANELS T, CHANG S, PETERSON K, et al Empirical framework for characterizing infrastructure failure interdependencies[J]. Journal of Infrastructure Systems, 2007, 13 (3): 175- 184
doi: 10.1061/(ASCE)1076-0342(2007)13:3(175)
[33]   FRANCHINA L, CARBONELLI M, GRATTA L, et al An impact-based approach for the analysis of cascading effects in critical infrastructures[J]. International Journal of Critical Infrastructures, 2011, 7 (1): 73- 90
doi: 10.1504/IJCIS.2011.038958
[34]   CARDELLINI V, CASALICCHIO E, GALLI E. Agent-based modeling of interdependencies in critical infrastructures through UML [C] // Proceedings of the 2007 spring simulation multi conference. Virginia: [s. n.], 2007: 119–126.
[35]   CASALICCHIO E, GALLI E, TUCCI S Agent-based modelling of interdependent critical infrastructures[J]. International Journal of Systems of Systems Engineering, 2010, 2 (1): 60- 75
doi: 10.1504/IJSSE.2010.035381
[36]   THOMPSON J R, FREZZA D, NECIOGLU B Interdependent critical infrastructure model (ICIM): an agent-based model of power and water infrastructure[J]. International Journal of Critical Infrastructure Protection, 2019, 24: 144- 165
doi: 10.1016/j.ijcip.2018.12.002
[37]   BROWN T, BEYELER W, BARTON D Assessing infrastructure interdependencies: the challenge of risk analysis for complex adaptive systems[J]. International Journal of Critical Infrastructure, 2004, 1 (1): 108- 117
doi: 10.1504/IJCIS.2004.003800
[38]   STAPELBERG R F Infrastructure systems interdependencies and risk informed decision making (RIDM): impact scenario analysis of infrastructure risks induced by natural, technological and intentional hazards[J]. Journal of Systemics, Cybernetics and Informatics, 2008, 6 (5): 21- 27
[39]   SANTELLA N, STEINBERG L J, PARKS K Decision making for extreme events: modeling critical infrastructure interdependencies to aid mitigation and response planning[J]. Review of Policy Research, 2009, 26 (4): 409- 422
doi: 10.1111/j.1541-1338.2009.00392.x
[40]   HAIMES Y Y, HOROWITZ B M, LAMBERT J H, et al Inoperability input–output model for interdependent infrastructure sectors. I: theory and methodology[J]. Journal of Infrastructure Systems, 2005, 11 (2): 67- 79
doi: 10.1061/(ASCE)1076-0342(2005)11:2(67)
[41]   CROWTHER K G, HAIMES Y Y Development of the multiregional inoperability input-output model (MRIIM) for spatial explicitness in preparedness of interdependent regions[J]. Systems Engineering, 2010, 13 (1): 28- 46
[42]   LIN J, TAI K, TIONG R L K, et al Analyzing impact on critical infrastructure using input-output interdependency model: case studies[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3 (4): 04017016
doi: 10.1061/AJRUA6.0000919
[43]   XU W P, WANG Z J, HONG L The uncertainty recovery analysis for interdependent infrastructure systems using the dynamic inoperability input-output model[J]. International Journal of Systems Science, 2015, 46 (7): 1299- 1306
doi: 10.1080/00207721.2013.822121
[44]   DUE?AS-OSORIO L, CRAIG J L, GOODNO B J. Probabilistic response of interdependent infrastructure networks [C] // Proceedings of the 2nd Annual Meeting of the Asian-Pacific Network of Centers for Earthquake Engineering Research. Hawaii: ANCER, 2004: 28–30.
[45]   DUE?AS-OSORIO L, JAMES I C, BARRY J G Seismic response of critical interdependent networks[J]. Earthquake Engineering and Structural Dynamics, 2007, 36 (2): 285- 306
doi: 10.1002/eqe.626
[46]   OUYANG M, HONG L, MAO Z J, et al A methodological approach to analyze vulnerability of interdependent infrastructures[J]. Simulation Modeling Practice and Theory, 2009, 17 (5): 817- 828
doi: 10.1016/j.simpat.2009.02.001
[47]   OUYANG M, DUE?AS-OSORIO L An efficient approach to compute generalized interdependent effects between infrastructure systems[J]. Journal of Computing in Civil Engineering, 2011, 25 (5): 394- 406
doi: 10.1061/(ASCE)CP.1943-5487.0000103
[48]   OUYANG M Review on modeling and simulation of interdependent critical infrastructure[J]. Reliability Engineering and System Safety, 2014, 121: 43- 60
doi: 10.1016/j.ress.2013.06.040
[49]   ZHOU F, YUAN Y B, ZHANG M Y Robustness analysis of interdependent urban critical infrastructure networks against cascade failures[J]. Arabian Journal for Science and Engineering, 2018, 44 (3): 2837- 2851
[50]   周方, 袁永博, 张明媛 级联失效下城市多层关键基础设施系统脆弱性分析[J]. 系统工程, 2018, 36 (7): 66- 74
ZHOU Fang, YUAN Yong-bo, ZHANG Ming-yuan Multilayer coupled network of urban critical infrastructure system vulnerability analysis[J]. System Engineering, 2018, 36 (7): 66- 74
[51]   李天华, 袁永博, 张明媛 基于可变模糊聚类的地震作用下电网节点脆弱性分析[J]. 科学技术与工程, 2018, 18 (18): 126- 130
LI Tian-hua, YUAN Yong-bo, ZHANG Ming-yuan Analysis of power gird vulnerability in the earthquake based on variable fuzzy clustering[J]. Science Technology and Engineering, 2018, 18 (18): 126- 130
[52]   何祥. 物流基础设施系统级联失效建模与脆弱性研究[D]. 大连: 大连理工大学, 2017.
HE Xiang. Cascading failure modeling and vulnerability analysis of logistics infrastructure system [D]. Dalian: Dalian University of Technology, 2017.
[53]   中华人民共和国国家标准. 中国地震动参数区划图: GB18306-2015 [S]. 北京: 中华人民共和国国家标准化管理委员会, 2015.
[1] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[2] Xue-qin ZHANG,Li ZHANG,Chun-hua GU. Quantitative assessment of social engineering threat in social network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 837-842.
[3] JIA Wen-chao, HU Rong-gui, SHI Fan, XU Cheng-xi. Injection vulnerability threat detection method with multi-feature correlation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 524-530.
[4] LIU Zhen, WU Ze-hui, CAO Yan, WEI Qiang. Software vulnerable code reuse detection method based on vulnerability fingerprint[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2180-2190.
[5] CHANG Chao, LIU Ke-sheng, TAN Long-dan, JIA Wen-chao. Data flow analysis for C program based on graph model[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 1007-1015.
[6] HUANG Zeng, WANG Rui, ZHAO Yu, WEI Zhen-lei. Susceptibility assessment of landslides triggered by buried fault earthquake[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2136-2143.
[7] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[8] HUANG Jia hui, FENG Dong qin. Method for vulnerability evaluation of Cyberphysical system based on generalized profit[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1119-1125.
[9] QIN Xuan,ZHUO Guang jie,MO Yi yi. Vulnerability of risk paths of complex green building projects[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2177-2187.
[10] WAN Zhi-yuan, ZHOU Bo. Static information flow tracking based approach to detect input validation vulnerabilities[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 683-691.
[11] SU Liang, SUO Jing, SONG Ming-liang. Parameter sensitivity analysis of seismic vulnerability assessment for RC frames[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1384-1390.
[12] GAO Meng-zhou, FENG Dong-qin, LING Cong-li, CHU Jian. Vulnerability analysis of industrial control system based on attack graph[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2123-2131.
[13] WANG Qiong, DENG Hua. Analysis of elasto-plastic dynamic responses of suspendome under rare earthquake[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1889-1895.
[14] YAO Xiao-wen, JIANG Jian-qun, LIU Guo-hua. Deformation-based seismic fragility analysis of concrete arch dams[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1839-1845.
[15] HE Jiang-fei, GAO Bo-qing. Vulnerability assessment and failure scenarios identification
of truss structures
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1633-1637.