Please wait a minute...
J4  2013, Vol. 47 Issue (11): 1889-1895    DOI: 10.3785/j.issn.1008-973X.2013.11.001
    
Analysis of elasto-plastic dynamic responses of suspendome under rare earthquake
WANG Qiong, DENG Hua
Space Structures Research Center, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The characteristics of elasto-plastic dynamic response of suspendomes under rare earthquake are investigated based on 18 illustrative structural models, and the effects caused by initial pretension, rigidity and symmetry of substructure, connection condition of abutments and rise-span ratio are analyzed. The results reveal that, for most of models, the members with residual plastic strain under rare earthquakes mainly located in the central of the upper lattice shell instead of the area near the abutments. Raising the initial pretension will contribute to significant increases in both the number and the residual plastic strain of plastic members. The elasto-plastic responses of suspendomes are more sensitive to the symmetry of substructure and the rise-span ratio of roof. An index, named as the ratio of residual ultimate bearing capacity, is defined to quantitatively evaluate the damage level of suspendome after rare earthquakes. By means of this index, it is analyzed that the ultimate bearing capacity of suspendome can keep a level of more than 90% after rare earthquake if its members are satisfied with the elasticity check under frequently-occurred earthquake in the 7-degree zone, or under fortification earthquake in the 8-degree zone.



Published: 01 November 2013
CLC:  TU 393.3  
  TU 313.3  
Cite this article:

WANG Qiong, DENG Hua. Analysis of elasto-plastic dynamic responses of suspendome under rare earthquake. J4, 2013, 47(11): 1889-1895.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.11.001     OR     http://www.zjujournals.com/eng/Y2013/V47/I11/1889


罕遇地震下弦支穹顶的弹塑性动力响应分析

基于18个算例模型,对弦支穹顶在罕遇地震下的弹塑性响应特点进行考察,分析初始预张力、下部结构刚度及其对称性、支座连接条件以及矢跨比等因素的影响.结果表明,罕遇地震下大多数模型的塑性杆件主要出现在上部网壳的中部而不在临支座区域;增加初始预张力会造成结构的塑性杆件数及残余塑性应变明显增加;下部结构的对称性和网壳矢跨比对弦支穹顶的弹塑性响应最为敏感.提出一个定量评价罕遇地震作用后弦支穹顶破坏程度的极限承载力剩余率指标.利用该指标进行分析表明,7度时弦支穹顶结构的杆件按小震弹性设计、8度时按中震弹性设计,则罕遇地震后结构的极限承载能力一般能够保持在90%以上.

[1] 崔晓强,郭彦林.弦支穹顶结构的抗震性能研究[J]. 振动与冲击,2005,25 (1): 67-75.
CUI Xiao-qiang,GUO Yan-li. Seismic behaviors of suspen-dome structure [J]. Journal of Vibration and Shock,2005,25 (1): 6775.
[2] 罗永峰,刘慧娟,韩庆华. 弦支穹顶结构动力稳定性分析方法[J]. 西南交通大学学报,2008, 43(6): 729-735.
LUO Yong-feng, LIU Hui-juan,HAN Qing-hua.Analysis method of dynamic stability of suspended-dome structures [J]. Journalof Southwest Jiaotong University, 2008, 43(6): 729735.
[3] 陈志华,张立平,李阳. 弦支穹顶结构实物动力特性研究 [J]. 工程力学,2007,24 (3): 131-137.
CHEN Zhi-hua,ZHANG Li-ping,LI Yang. Studies on dynamic properties of real suspend structure on site [J].Engineering Mechanics,2007,24 (3): 131137.
[4] GB50011-2010. 建筑抗震设计规范 [S].北京:中国建筑工业出版社,2010.
GB50011-2010. Code for seismic design of buildings [S].Beijing: China Building Industry Press, 2010.
[5] 董石麟,罗尧治,赵阳. 新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
[6] GB50009-2001. 建筑结构荷载规范[S].北京:中国建筑工业出版社,2001.
GB50009-2001.Load code for the design of building structures  [S].Beijing: China Building Industry Press, 2001.
[7] GB 50205-2001. 钢结构工程施工质量验收规范 [S].北京: 中国计划出版社,2001.
GB 50205-2001.Code for seismic design of buildings [S].Beijing: China Planning Press, 2001.
[8] JG7-2010. 空间网格结构技术规程[S].北京:中国建筑工业出版社,2010.
JGJ 7-2010. Technical specification for space frame structures  [S].Beijing: China Building Industry Press, 2010.
[9] 黄旭乐.网格结构多维地震响应计算方法的对比研究[D].杭州:浙江大学,2011..
HUANG Xu-le.Comparison on the analytical methods of long-span lattice structures under multi-dimensional earthquake [D]. Hangzhou: Zhejiang University,2011.
[10] CLOUGH R , PENZIEN J . 结构动力学 [M]. 王光远,译.北京:高等教育出版社,2007: 190-192.

[1] DENG Hua, HUANG Li, WANG Chen. Analysis on wind-induced dynamic behaviors of polyurethane sandwich roof panels[J]. J4, 2013, 47(12): 2125-2131.
[2] SU Liang, SUO Jing. Comparison of different equivalent linearization approaches applied to displacement-based seismic design methodology[J]. J4, 2013, 47(11): 1926-1931.
[3] ZHANG Cheng, LI Zhi-an, GAO Bo-qing, Dong Shi-lin. Robustness analysis of reticular shells based on H∞ theory[J]. J4, 2013, 47(5): 818-823.
[4] ZHANG Min-rui, DENG Hua, LIU Hong-chuang, DONG Shi-lin. Model experiment on the static behaviors of a crescent-shaped
cable-truss canopy structure
[J]. J4, 2013, 47(2): 367-377.
[5] HE Jiang-fei, GAO Bo-qing. Vulnerability assessment and failure scenarios identification
of truss structures
[J]. J4, 2012, 46(9): 1633-1637.
[6] WU Hui,CEN Di-Qin,GAO Bo-qing. Approximate optimization and performance analysis of
rigid cable dome structure
[J]. J4, 2011, 45(11): 1966-1971.
[7] ZHANG Cheng, WU Hui, GAO Bo-qing, WANG Yi-jun. Pattern recognition of dynamic failure mode of grid structure using
fuzzy clustering
[J]. J4, 2011, 45(7): 1276-1280.
[8] DENG Hua, SONG Rong-min, ZHUO Xin, LOU Dao-an. Monitoring and compensation of prestress relaxation of pre-tensioned
pin-bar structure
[J]. J4, 2011, 45(7): 1269-1275.
[9] XU Guo-jie,ZHUO Xin,SHOU Quan-gen,QIU Li-ming,FAN Feng. Structural performance of TH-Levy cable dome when
local component failure
[J]. J4, 2011, 45(7): 1281-1287.
[10] DENG Hua, CHENG Jun, JIANG Ben-wei, LOU Dao-an. Member length error effect on cable-strut tensile structure[J]. J4, 2011, 45(1): 68-74.