Please wait a minute...
J4  2011, Vol. 45 Issue (7): 1269-1275    DOI: 10.3785/j.issn.1008-973X.2011.07.022
    
Monitoring and compensation of prestress relaxation of pre-tensioned
pin-bar structure
DENG Hua1, SONG Rong-min1, ZHUO Xin1, LOU Dao-an2
1. Space Structures Research Center, Zhejiang University, Hangzhou 310058, China;
2. Zhejiang Zhancheng Construction Group Ltd., Hangzhou 310005, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mathematical model for analyzing the pre-tension deviation of prestressed pin-bar system was established in order to monitor and compensate of the tension deviation for in-service structures. The factors causing prestress relaxation were described as the change of member’s initial length. Based on the equation, in which the relationship between the length variations of active cables and the axial-force variations of inspected members was reflected, the principle of determining the number of inspected members was discussed by analyzing the properties of that equation’s roots. A method for locating the effective inspected members was also suggested by means of the variance sensitivity analysis of axial force increments of members to length increments of active cables. Equations were further deduced to calculate the tension deviation of active cables or their approximate least square solution according to the axial force deviation of inspected bars, and a parameter was defined to reflect the influence of relaxation of passive bars. The method for calculating the compensatory tension forces was proposed. An illustrative example shows that the method is effective for the quantitative monitoring and compensation analysis of tension deviation in pre-tensioned pin-bar structure.



Published: 01 July 2011
CLC:  TU 393.3  
  TU 394  
Cite this article:

DENG Hua, SONG Rong-min, ZHUO Xin, LOU Dao-an. Monitoring and compensation of prestress relaxation of pre-tensioned
pin-bar structure. J4, 2011, 45(7): 1269-1275.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.07.022     OR     https://www.zjujournals.com/eng/Y2011/V45/I7/1269


预应力杆系结构的张力偏差监测及补偿

为了对使用期的结构预张力变化进行监测和补偿分析,将各类引起预张力松弛的因素描述为杆件原长的变化量,建立预应力杆系结构张力偏差分析的数学模型.基于反映主动索索长变化和测点杆件内力变化关系的线性方程,通过分析该方程解的特性探讨监测点数的确定原则,提出一种根据杆件内力增量方差对主动索索长增量方差的敏感性来选择有效测点杆件的方法.根据测点杆件的内力偏差,推导求解主动索索力偏差或最小二乘估计值的计算公式,建议一个评判被动杆松弛影响大小的指标,提出补偿张力的计算方法.算例分析表明,该方法对于预应力杆系结构的预张力监测和补偿定量化分析是有效的.

[1] 邓华, 董石麟. 拉索预应力空间网格结构的计算分析方法[J]. 浙江大学学报:工学版, 1998, 32(5): 558-562.
DENG Hua, DONG Shilin. Analysis method of pretensioned reticulated structures [J]. Journal of Zhejiang University: Engineering Science, 1998, 32(5): 558-562.
[2] 董石麟,邓华.预应力网架结构的简捷计算法及施工张拉全过程分析[J]. 建筑结构学报, 2001, 22(2): 18-22.
DONG Shilin, DENG Hua. A simple computation method of prestressed space truss and its global process pretensioning analysis [J]. Journal of Building Structures, 2001, 22(2): 18-22.
[3] 邓华,姜群峰. 环形张力索桁罩棚结构施工过程的形态分析[J]. 土木工程学报, 2005, 38(6): 1-7.
DENG Hua, JIANG Qunfeng. Shape analysis of annular tensile cabletruss canopy structures during erection process [J]. China Civil Engineering Journal, 2005, 38(6): 1-7.
[4] 周臻,孟少平,吴京. 预应力空间网格结构的预应力施工控制理论研究[J]. 土木工程学报, 2007, 40(12): 46-51.
ZHOU Zhen, MENG Shaoping, WU Jing. Tensioning process control theory for prestressed reticulated structures [J]. China Civil Engineering Journal, 2007, 40(12): 46-51.
[5] 陈鲁,张其林,周学军. 济南奥体中心体育馆弦支穹顶索力检测[J]. 施工技术, 2009, 38(6): 39-41.
CHEN Lu, ZHANG Qilin, ZHOU Xuejun. Measurement of cable force in suspendeddome in Ji’nan Olympic Center gymnasium [J]. Construction Technology, 2009, 38(6): 39-41.
[6] 周详, 刘益虹. 工程结构检测[M]. 北京: 北京大学出版社, 2007: 20-39.
[7] 邓华. 拉索预应力空间网格结构设计的几个概念[J]. 工业建筑, 2000, 30(10): 64-67.
DENG Hua. Some concepts in the design of pretensioned space lattice structures [J]. Industrial Construction, 2000, 30(10): 64-67.
[8] PELLEGRINO S, CALLADINE C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. International Journal of Solids and Structures, 1986, 22(4): 409-428.
[9] STRANG G. Linear algebra and its applications [M]. 3rd ed. New York: Harcourt Brace Jovanovich, 1986: 71-80.
[10]SALTELLI A, RATTO M, ANDRES T, et al. Global sensitivity analysis [M]. Chichester: Wiley, 2008: 155-182.
[11] KARIYA T, KURATA H. Generalized least squares [M]. Chichester: Wiley, 2004: 33-39.

[1] DENG Hua, HUANG Li, WANG Chen. Analysis on wind-induced dynamic behaviors of polyurethane sandwich roof panels[J]. J4, 2013, 47(12): 2125-2131.
[2] WANG Qiong, DENG Hua. Analysis of elasto-plastic dynamic responses of suspendome under rare earthquake[J]. J4, 2013, 47(11): 1889-1895.
[3] SU Liang, SUO Jing. Comparison of different equivalent linearization approaches applied to displacement-based seismic design methodology[J]. J4, 2013, 47(11): 1926-1931.
[4] ZHANG Cheng, LI Zhi-an, GAO Bo-qing, Dong Shi-lin. Robustness analysis of reticular shells based on H∞ theory[J]. J4, 2013, 47(5): 818-823.
[5] ZHANG Min-rui, DENG Hua, LIU Hong-chuang, DONG Shi-lin. Model experiment on the static behaviors of a crescent-shaped
cable-truss canopy structure
[J]. J4, 2013, 47(2): 367-377.
[6] HE Jiang-fei, GAO Bo-qing. Vulnerability assessment and failure scenarios identification
of truss structures
[J]. J4, 2012, 46(9): 1633-1637.
[7] WU Hui,CEN Di-Qin,GAO Bo-qing. Approximate optimization and performance analysis of
rigid cable dome structure
[J]. J4, 2011, 45(11): 1966-1971.
[8] ZHANG Cheng, WU Hui, GAO Bo-qing, WANG Yi-jun. Pattern recognition of dynamic failure mode of grid structure using
fuzzy clustering
[J]. J4, 2011, 45(7): 1276-1280.
[9] XU Guo-jie,ZHUO Xin,SHOU Quan-gen,QIU Li-ming,FAN Feng. Structural performance of TH-Levy cable dome when
local component failure
[J]. J4, 2011, 45(7): 1281-1287.
[10] DENG Hua, CHENG Jun, JIANG Ben-wei, LOU Dao-an. Member length error effect on cable-strut tensile structure[J]. J4, 2011, 45(1): 68-74.