Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2412-2422    DOI: 10.3785/j.issn.1008-973X.2019.12.020
Power and Electrical Engineering     
Fault identification of double-circuit transmission lines on same tower based on measuring wave impedance
Rui-kai YE(),Hao WU*(),Xing-xing DONG
Automation and Electronic Information Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Download: HTML     PDF(1189KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An algorithm for measuring wave impedance ratio braking fault identification was proposed based on S-transform, in order to improve the sensitivity and reliability of traveling wave protection on double-circuit transmission lines. S-transform was implemented to obtain the initial traveling wave phasor of the voltage of the busbar and the current of the transmission lines. Hereby, the measuring wave impedance of transmission line was calculated and the concepts of synthetical wave sum-impedance and synthetical wave differ-impedance were given. The theoretical analysis showed that, when an internal fault occured, the synthetical wave sum-impedance was smaller than the synthetical wave differ-impedance; when an external fault occured, the synthetical wave sum-impedance was much larger than the synthetical wave differ-impedance. The ratio braking coefficient was introduced, the synthetical wave sum-impedance was used as braking amount and the synthetical wave differ-impedance was taken as actuating amount, and the ratio braking protection criterion was established to identify internal and external faults. A large number of simulation results show that the algorithm has advantages of simple criterion, reliable performance, sensitive and quick response, and is less susceptible to the changes in initial fault angles, fault types, transitional resistances, and other factors.



Key wordsdouble-circuit transmission lines on same tower      measuring wave impedance S-transform      synthetical wave sum-impedance      synthetical wave differ-impedance      fault identification     
Received: 05 October 2018      Published: 17 December 2019
CLC:  TM 773  
  TM 771  
Corresponding Authors: Hao WU     E-mail: pokagic@163.com;wuhao801212@163.com
Cite this article:

Rui-kai YE,Hao WU,Xing-xing DONG. Fault identification of double-circuit transmission lines on same tower based on measuring wave impedance. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2412-2422.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.020     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2412


基于测量波阻抗的同杆双回输电线路故障识别

为提高行波保护在同杆双回输电线路上的灵敏性与可靠性,提出一种基于S变换的测量波阻抗比率制动故障识别算法. 利用S变换获取母线电压与线路电流的初始行波相量,据此计算线路测量波阻抗,给出和波阻抗与差波阻抗概念,引入综合和波阻抗和综合差波阻抗. 理论分析表明:当发生区内故障时,综合和波阻抗小于综合差波阻抗;当发生区外故障时,综合和波阻抗远大于综合差波阻抗. 引入比率制动系数,将综合和波阻抗作为制动量,综合差波阻抗作为动作量,建立比率制动保护判据进行区内、外故障识别. 大量仿真结果表明,该算法判据简单,性能可靠,动作灵敏、迅速,基本不受故障初始角、故障类型、过渡电阻、噪声干扰等因素影响.


关键词: 同杆双回输电线路,  测量波阻抗,  变换,  综合和波阻抗,  综合差波阻抗,  故障识别 
Fig.1 Simplified model of double circuit lines on same tower
Fig.2 Peterson equivalent circuit model for internal fault of double lines on same tower
Fig.3 Peterson equivalent circuit model for external fault of double lines on same tower
Fig.4 Waveform of traveling wave for internal fault occurs on bus M without noise
Fig.5 Waveform of traveling wave for internal fault on bus M with noise
Fig.6 Fault identification algorithm flow of double-circuit transmission lines on same tower
序号 故障类型 l / km $\theta \,/\,(^ \circ )$ ${R_{\rm{T}}}$ / Ω ${K_{\rm{s} } }\left| { {Z_{\rm{sM} } } } \right|\,/\,({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dM} } } } } \right|\,/\,(1{0^4}\;\Omega )$ ${ { {K} }_{\rm{s} } }\left| { { { {Z} }_{ {\rm{sN} } } } } \right|\,/\,({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dN} } } } } \right|\,/\,(1{0^4}\;\Omega )$ 判断结果
1 ⅡBGG 100 90 200 1.156 1.089 1.223 1.078 区内故障
ⅠBCG 100 90 200 1.157 1.089 1.223 1.078
ⅠBCⅡAG 100 90 200 1.157 1.089 1.223 1.078
2 ⅡBGG 200 8 500 1.115 1.103 1.098 1.105 区内故障
ⅠBCG 200 8 500 1.115 1.103 1.097 1.105
ⅠBCⅡAG 200 8 500 1.115 1.103 1.097 1.105
3 ⅠAⅡBG 150 8 50 1.087 1.110 1.087 1.110 区内故障
ⅠAⅡBG 150 15 50 1.114 1.105 1.114 1.105
ⅠAⅡBG 150 45 50 1.087 1.110 1.087 1.110
ⅠAⅡBG 150 90 50 1.087 1.110 1.087 1.110
ⅠAⅡBG 150 120 50 1.159 1.088 1.159 1.088
4 ⅠABCⅡA 200 8 ? 1.087 1.110 1.087 1.110 区内故障
ⅠABCⅡA 200 15 ? 1.114 1.105 1.114 1.105
ⅠABCⅡA 200 45 ? 1.087 1.110 1.087 1.110
ⅠABCⅡA 200 90 ? 1.098 1.105 1.098 1.105
ⅠABCⅡA 200 120 ? 1.098 1.105 1.098 1.105
5 ⅡACG 250 45 0 1.087 1.112 1.106 1.101 区内故障
ⅡACG 250 45 100 1.103 1.108 1.087 1.107
ⅡACG 250 45 300 1.105 1.107 1.085 1.108
ⅡACG 250 45 600 1.105 1.107 1.084 1.108
Tab.1 Algorithm performance test results for internal fault of double-circuit transmission line on same tower
序号 故障类型 l / km $\theta \,/\,( ^ \circ )$ ${R_{\rm{T}}}$ / Ω ${{{K}}_{\rm{s}}}\left| {{Z_{\rm{sM} }}} \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dM}}}}} \right|\,/\,(1{0^{ - 9}}\;\Omega )$ ${{{K}}_{\rm{s}}}\left| {{{{Z}}_{{\rm{sN}}}}} \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dN}}}}} \right|\,/\,(1{0^{ - 9}}\;\Omega )$ 判断结果
1 CG 50 15 200 8.992 12.464 4.402 0.109 区外故障
BCG 50 15 200 9.055 0.135 4.396 0.208
ABCG 50 15 200 8.994 0.122 4.396 0.168
2 CG 100 120 500 8.253 0.396 4.402 2.249 区外故障
BCG 100 120 500 8.257 0.360 4.402 0.126
ABCG 100 120 500 8.257 0.110 4.402 0.138
3 AG 50 8 100 8.978 6.865 4.402 0.253 区外故障
AG 50 15 100 8.995 2.353 4.402 0.260
AG 50 45 100 9.014 0.252 4.402 0.195
AG 50 90 100 9.038 1.256 4.402 0.183
AG 50 120 100 9.007 1.411 4.401 0.244
4 AC 100 8 ? 8.184 2.354 4.402 0.152 区外故障
AC 100 15 ? 8.208 4.916 4.402 0.259
AC 100 45 ? 8.405 2.649 4.402 0.024
AC 100 90 ? 8.407 0.430 4.402 0.023
AC 100 120 ? 8.361 0.353 4.401 0.071
5 BG 50 45 0 9.050 1.126 4.406 0.069 区外故障
BG 50 45 100 9.045 3.267 4.406 0.423
BG 50 45 300 9.040 13.983 4.406 0.617
BG 50 45 600 9.037 12.736 4.406 5.109
Tab.2 Algorithm performance test results for external fault of double-circuit transmission line on same tower
故障情况 丢失数据 $k$ ${ { {K} }_{\rm{s} } }\left| { {Z_{\rm{sM} } } } \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dM}}}}} \right|/\Omega $ ${ { {K} }_{\rm{s} } }\left| { { { {Z} }_{ {\rm{sN} } } } } \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dN}}}}} \right|/\Omega $ 判断结果
故障一:
ⅠBCⅡA
l=100 km
θ=90°
RT=200 Ω
0 1.157 $1.089 \times 1{0^4}$ 1.222 $1.078 \times 1{0^4}$ 区内故障
电压 峰值 $1.100$ $1.034 \times 1{0^4}$ $1.222$ $1.078 \times 1{0^4}$
电流 峰值 $1.208$ $1.071 \times 1{0^4}$ $1.222$ $1.078 \times 1{0^4}$
电压&电流 峰值 $1.100$ $1.034 \times 1{0^4}$ $1.222$ $1.078 \times 1{0^4}$
故障二:
ⅠAG
l=100 km
θ=45°
RT=100 Ω
0 $1.156$ $1.089 \times 1{0^4}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
电压 5 $0.925$ $8.710 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
10 $0.635$ $5.993 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
15 $0.288$ $2.727 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
电流 5 $1.413$ $9.995 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
10 $1.675$ $9.103 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
15 $1.937$ $8.219 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
电压&电流 5 $1.020$ $7.636 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
10 $0.888$ $4.380 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
15 $0.444$ $2.191 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
故障三:
ABG
l=100 km
θ=90°
RT=300 Ω
无丢失 0 $8.407$ $4.879 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$ 区外故障
电压 5 $6.254$ $3.133 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$ 区外故障
10 $4.191$ $2.658 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
15 $2.053$ $7.013 \times 1{0^{ - 11}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
电流 5 $6.306$ $3.755 \times 1{0^{ - 10}}$ $4.402$ $1.526 \times 1{0^{ - 11}}$ 区外故障
10 $4.220$ $2.519 \times 1{0^{ - 10}}$ $4.402$ $1.526 \times 1{0^{ - 11}}$
15 $2.069$ $9.998 \times 1{0^{ - 11}}$ $4.402$ $1.526 \times 1{0^{ - 11}}$
电压&电流 5 $6.302$ $3.724 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$ 区外故障
10 $4.205$ $2.296 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
15 $2.478$ $1.122 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
Tab.3 Performance test results of protection algorithm for double-circuit transmission line on same tower with losing traveling wave samples
故障情况 SNR/dB ${ { {K} }_{\rm{s} } }\left| { {Z_{\rm{sM} } } } \right|/({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dM} } } }} \right|/({10^3}\;\Omega )$ ${ { {K} }_{\rm{s} } }\left| { { { {Z} }_{ {\rm{sN} } } }} \right|/({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dN} } } }} \right|/({10^3}\;\Omega )$ 判断结果
ⅠAⅡBG
l=150 km
θ=90°
RT=50 Ω
10 $2.851$ $3.649$ $1.834$ $8.220$ 区内故障
20 $2.548$ $7.176$ $2.400$ $14.310$
30 $1.110$ $9.840$ $0.892$ $10.599$
40 $0.949$ $10.756$ $0.981$ $11.227$
50 $1.055$ $10.853$ $1.146$ $11.057$
60 $1.135$ $11.154$ $1.127$ $11.202$
Tab.4 Performance test results of protection algorithm for internal fault of double-circuit transmission line on same tower under the noise with different SNR
[1]   毕天姝, 李伟, 徐振宇, 等 基于单端单回线电气量的同杆双回线单相接地距离保护[J]. 电力系统自动化, 2013, 37 (7): 88- 93
BI Tian-shu, LI Wei, XU Zhen-yu, et al Single-phase grounding distance protection of parrallel transmission lines on same poles based on electric quantities data from single terminal and single line[J]. Automation of Electric Power Systems, 2013, 37 (7): 88- 93
doi: 10.7500/AEPS201111087
[2]   RAMAR K, LOW H S, EGU E E. One-end impedance based fault location in double-circuit transmission lines with different configurations[J]. Electrical Power and Energy Systems, 2015, 64 (1): 1159- 1165
[3]   李伟, 毕天姝, 杨奇逊 基于相关分析的同杆双回线突变量选相新方法[J]. 电力系统自动化, 2011, 35 (8): 58- 62
LI Wei, BI Tian-shu, YANG Qi-xun Fault phase selection with component in same-tower double-circuit lines based on correlation analysis[J]. Automation of Electric Power Systems, 2011, 35 (8): 58- 62
[4]   刘千宽, 黄少锋, 王兴国 同杆并架双回线基于电流突变量的综合选相[J]. 电力系统自动化, 2007, 31 (21): 53- 57
LIU Qian-kuan, HUANG Shao-feng, WANG Xing-guo Phase selector based on fault component current for double-circuit transmission lines on single tower[J]. Automation of Electric Power Systems, 2007, 31 (21): 53- 57
doi: 10.3321/j.issn:1000-1026.2007.21.012
[5]   李小鹏, 何正友, 夏璐璐 同杆双回输电线路的固有频率测距算法[J]. 电力系统自动化, 2011, 35 (12): 47- 51
LI Xiao-peng, HE Zheng-you, XIA Lu-lu Natural frequencies based fault location algorithm for parallel transmission lines on the same tower[J]. Automation of Electric Power Systems, 2011, 35 (12): 47- 51
[6]   张子衿, 丛伟, 肖静, 等 含同杆双回线的输电网零序反时限过流保护加速配合方案[J]. 电力自动化设备, 2017, 37 (9): 159- 165
ZHANG Zi-jin, CONG Wei, XIAO Jing, et al Acceleration scheme of zero-sequence inverse-time overcurrent protection for double-circuit lines on same tower[J]. Electric Power Automation Equipment, 2017, 37 (9): 159- 165
[7]   蔡国伟, 周国屏, 李凌 基于同步相量测量的同杆双回路继电保护方案的研究[J]. 电力自动化设备, 2007, 27 (6): 56- 59
CAI Guo-wei, ZHOU Guo-ping, LI Ling Protection scheme for double-line with same pole based on synchronized phasor measurement[J]. Electric Power Automation Equipment, 2007, 27 (6): 56- 59
doi: 10.3969/j.issn.1006-6047.2007.06.013
[8]   张武军, 何奔腾, 洪光辉, 等 同杆并架双回线路行波差动保护[J]. 电力系统自动化, 2008, 32 (17): 66- 71
ZHANG Wu-jun, HE Ben-teng, HONG Guang-hui, et al Traveling-wave differential relay scheme for double-circuit parallel lines on the same pole[J]. Automation of Electric Power Systems, 2008, 32 (17): 66- 71
doi: 10.3321/j.issn:1000-1026.2008.17.014
[9]   范春菊, 郁惟镛 基于横差模电流暂态能量的同杆双回线保护方案[J]. 电网技术, 2006, 30 (17): 69- 74
FAN Chun-ju, YU Wei-yong Protection scheme for double lines on same tower based on transient energy of modal differential transervese current[J]. Power System Technology, 2006, 30 (17): 69- 74
[10]   EISSA M M, MASOUD M A novel digital distance relaying technique for transmission line protection[J]. IEEE Transon Power Delivery, 2001, 16 (3): 380- 384
doi: 10.1109/61.924814
[11]   张海, 黄少锋 一种适用于低线间距的同杆双回线跨线故障等值算法[J]. 电力系统保护与控制, 2012, 40 (20): 56- 61
ZHANG Hai, HUANG Shao-feng An inter line fault equivalent algorithm for common-tower double-transmission line with narrow line-to-line distance[J]. Power System Protection and Control, 2012, 40 (20): 56- 61
doi: 10.7667/j.issn.1674-3415.2012.20.010
[12]   李小鹏, 滕予非, 刘耀, 等 基于测量波阻抗的高压直流输电线路纵联保护[J]. 电网技术, 2017, 41 (2): 617- 623
LI Xiao-peng, TENG Yu-fei, LIU Yao, et al Pilot protection based on measure surge impedance for HVDC transmission lines[J]. Power System Technology, 2017, 41 (2): 617- 623
[13]   刘兴茂, 林圣, 何正友, 等 基于S变换的新型波阻抗方向继电器[J]. 中国电机工程学报, 2013, 33 (22): 113- 119
LIU Xing-mao, LIN Sheng, HE Zheng-you, et al A novel surge impedance directional relay based on S Transform[J]. Proceeding of the CSEE, 2013, 33 (22): 113- 119
[14]   刘兴茂, 林圣, 何正友, 等 基于S变换的行波相位比较式方向继电器[J]. 电网技术, 2014, 38 (3): 744- 749
LIU Xing-mao, LIN Sheng, HE Zheng-you, et al S-transform based travelling wave phase comparison directional relay[J]. Power System Technology, 2014, 38 (3): 744- 749
[15]   施慎行, 董新洲, 周双喜 单相接地故障行波分析[J]. 电力系统自动化, 2005, 29 (23): 29- 32+53
SHI Shen-xing, DONG Xin-Zhou, ZHOU Shuang-xi Analysis of single-phase-to-ground fault generated traveling waves[J]. Automation of Electric Power Systems, 2005, 29 (23): 29- 32+53
doi: 10.3321/j.issn:1000-1026.2005.23.006
[16]   吴浩, 李群湛, 刘炜 输电线路功率型行波纵联保护新方法[J]. 电力系统自动化, 2016, 40 (2): 107- 113
WU Hao, LI Qun-zhan, LIU Wei A new pilot protection algorithm based on traveling wave power for transmission lines[J]. Automation of Electric Power Systems, 2016, 40 (2): 107- 113
doi: 10.7500/AEPS20150622005
[17]   叶睿恺, 吴浩, 董星星 基于初始行波相位差的同杆双回输电线路故障识别[J]. 电力系统保护与控制, 2019, 47 (03): 118- 128
YE Rui-kai, WU Hao, DONG Xing-xing Fault identification of double lines on same tower based on phase difference of initial traveling wave[J]. Power System Protection and Control, 2019, 47 (03): 118- 128
[18]   孔令号, 焦彦军, 戴志辉, 等 比率制动电荷量线路差动保护[J]. 电力系统自动化, 2014, 38 (24): 91- 95
KONG Ling-hao, JIAO Yan-jun, DAI Zhi-hui, et al Ratio-restraining differential protection of lines based on charge[J]. Automation of Electric Power Systems, 2014, 38 (24): 91- 95
doi: 10.7500/AEPS20130726001
[19]   李晓华, 张哲, 尹项根, 等 故障分量比率差动保护整定值的选取[J]. 电网技术, 2001, 25 (4): 47- 50
LI Xiao-hua, ZHANG Zhe, YIN Xiang-gen, et al Selection of settings of differential protection based on fault component[J]. Power System Technology, 2001, 25 (4): 47- 50
doi: 10.3321/j.issn:1000-3673.2001.04.013
[1] QIU Ri hui, LIU Kang ling, TAN Hai long, LIANG Jun. Classification algorithm based on extreme learning machine and its application in fault identification of Tennessee Eastman process[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1965-1972.