Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2404-2411    DOI: 10.3785/j.issn.1008-973X.2019.12.019
Power and Electrical Engineering     
Effects of nano-scale heterogeneity on fuel jet spray characteristics
Wei-yi CAI1(),Yin-nan YUAN1,2,De-qing MEI1,*(),Xiao-dong ZHAO1
1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2. School of Energy, Soochow University, Suzhou 215006, China
Download: HTML     PDF(1476KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Nano fuels with mass concentration of 50 and 100 mg/L was prepared by two-step method, using cerium oxide (CeO2) nano particles with mean diameter of 20 nm and taking oleic acid as surfactant, which were named as Ce50 and Ce100 fuel. Some basic physical parameters such as density, viscosity and surface tension of fuel blends were measured. The developing process of fuel injection was captured with images on the high-pressure common rail spray measuring system; then the spray penetration length and cone angle were obtained after the spray images being processed with Matlab software. It is revealed that, compared with diesel, the viscosities of Ce50 and Ce100 nano-fuel blends were increased by 2.1% and 4.7%, respectively, while the density and surface tension were augmented slightly. Almost at each moment of the spray proceeding under one specified injection pressure, the nano-fuel exhibits longer spray penetration length and slightly smaller cone angle than diesel. Compared with diesel, the spray penetration of Ce50 Nano-fuel was increased by 1.4, 1.9 and 2.4 mm and the spray penetration length of Ce100 Nano-fuel was increased by 2.9, 2.9 and 3.7 mm, respectively, at the injection pressure of 80, 120 and 160 MPa under the ambient pressure of 2 MPa. With the rise of injection pressure, the differences in both spray penetration length and cone angle between nano-fuel and diesel are magnified. When the ambient pressure increases, the spray penetration is shortened and the cone angle is magnified; the differences of the spray penetration and the cone angle between diesel and nano-fuel with different mass concentrations are reduced.



Key wordsdiesel      nano-fuel      jet flow      spray characteristic      high-pressure common rail     
Received: 15 November 2018      Published: 17 December 2019
CLC:  TK 421  
Corresponding Authors: De-qing MEI     E-mail: caiweiyi_ujs@163.com;meideqing@ujs.edu.cn
Cite this article:

Wei-yi CAI,Yin-nan YUAN,De-qing MEI,Xiao-dong ZHAO. Effects of nano-scale heterogeneity on fuel jet spray characteristics. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2404-2411.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.019     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2404


纳米异质粒子对燃油射流喷雾特性的影响

选用平均粒径为20 nm的CeO2纳米粒子,以油酸为表面活性剂,采用两步法配制质量浓度分别为50与100 mg/L的纳米燃油,分别称为Ce50和Ce100燃油;测量柴油和纳米燃油的密度、黏度和表面张力等基础物性参数;在高压共轨喷雾试验台上拍摄燃油射流喷雾发展过程的影像,应用Matlab软件处理影像,得到喷雾贯穿距和喷雾锥角等特性参数. 结果表明:与柴油相比,Ce50和Ce100纳米燃油的黏度分别增加了2.1%与4.7%,密度和表面张力的增加量较小. 在相同喷射压力下的不同喷雾发展时刻,纳米燃油的油束贯穿距大于柴油,喷雾锥角略小于柴油. 在背压为2 MPa、喷射压力分别为80、120和160 MPa时,与柴油相比,Ce50纳米燃油的喷雾贯穿距分别增加了1.4、1.9和2.4 mm,Ce100纳米燃油的贯穿距分别增加了2.9、2.9和3.7 mm. 随着喷射压力的提高,纳米燃油与柴油在喷雾贯穿距和喷雾锥角上的差异增大. 当燃油喷射背压增加时,油束的贯穿距缩短而喷雾锥角增大,不同质量浓度纳米燃油和柴油的贯穿距和喷雾锥角的差异有所减小.


关键词: 柴油,  纳米燃油,  射流,  喷雾特性,  高压共轨 
参数 数值 单位
纯度 99.9 %
粒径 20 nm
松装密度 0.22 g/cm3
真实密度 7.13 g/cm3
比表面积 30~50 m2/g
粒子形态 微球形 ?
Tab.1 Main parameters of CeO2 nanoparticles
燃油 ρ/(g·cm?3 η/(10?3 Pa·s) σ/(10?3 N·m)
Diesel 0.845 1 4.73 26.81
Ce50 0.847 2 4.93 26.93
Ce100 0.847 4 5.15 27.04
Tab.2 Basic physical parameters of diesel and nano-fuel
Fig.1 Diagram of spray test system
试验工况 ps / MPa pb / MPa 试验工况 ps / MPa pb / MPa
1 80 2 4 120 1
2 120 2 5 120 4
3 160 2 ? ? ?
Tab.3 Spray test scheme under ambient temperature of 300 K
Fig.2 Procedure of spray image processing
Fig.3 Verification of accuracy of oil beam edge
Fig.4 Spray images of diesel,Ce50 and Ce100 nano-fuel at different times
Fig.5 Spray penetration length of diesel at different injection pressures
Fig.6 Spray penetration length of diesel and nano-fuel at different injection pressure values
Fig.7 Spray angle of diesel at different injection pressure
Fig.8 Spray angle of diesel and nano-fuel at different injection pressure
Fig.9 Spray penetration distance of diesel under different ambient pressure
Fig.10 Spray penetration of diesel and nano-fuel under different ambient pressure
Fig.11 Spray angle of diesel under different ambient pressure
Fig.12 Spray angle of diesel and nano-fuel at different ambient pressure
[1]   CHOI S U S, EASTMAN J A Enhancing thermal conductivity of fluids with nanoparticles[J]. Developments and Applications of Non-Newtonian Flows, 1995, 66: 99- 105
[2]   邬齐敏, 孙平, 梅德清, 等 纳米燃油添加剂CeO2提高柴油燃烧效率减少排放 [J]. 农业工程学报, 2013, 29 (9): 64- 69
WU Qi-min, SUN Ping, MEI De-qing, et al Nano-fuel additive CeO2 on promoting efficient combustion and reducing emissions of diesel engine [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (9): 64- 69
[3]   LENIN M A, SWAMINATHAN M R, KUMARESAN G Performance and emission characteristics of a DI diesel engine with a nano-fuel additive[J]. Fuel, 2013, 109 (7): 362- 365
[4]   SUNGUR B, TOPALOGLU B, OZCAN H Effects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boiler[J]. Energy, 2016, 113: 44- 51
doi: 10.1016/j.energy.2016.07.040
[5]   ZHANG Y J, XU Y H, YANG Y B, et al Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives[J]. Industrial Lubrication and Tribology, 2015, 67 (3): 227- 232
doi: 10.1108/ILT-10-2012-0098
[6]   袁银南, 陈汉玉, 张春丰, 等 生物柴油喷雾特性试验[J]. 农业机械学报, 2008, 39 (7): 1- 4
YUAN Yin-nan, CHEN Han-yu, ZHANG Chun-feng, et al Experimental study on spray characteristics of biodiesel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39 (7): 1- 4
[7]   HUO M, LIN S L, LIU H F, et al Study on the spray and combustion characteristics of water-emulsified diesel[J]. Fuel, 2014, 123 (1): 218- 229
[8]   OOI J B, ISMAIL H M, SWAMY V, et al Graphite oxide nanoparticles as diesel fuel additive for cleaner emissions and lower fuel consumption[J]. Energy and Fuels, 2016, 30 (2):
[9]   彭小飞, 俞小莉, 夏立峰, 等 纳米流体悬浮稳定性影响因素[J]. 浙江大学学报: 工学版, 2007, 41 (4): 577- 580
PENG Xiao-fei, YU Xiao-li, XIA Li-feng, et al Influence factors on suspension stability of nanofluids[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (4): 577- 580
[10]   MAO C, ZOU H F, ZHOU X, et al Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding[J]. International Journal of Advanced Manufacturing Technology, 2014, 71 (9-12): 2073- 2081
doi: 10.1007/s00170-014-5642-9
[11]   BALAMURUGAN S, SAJITH V Experimental investigation on the stability and abrasive action of cerium oxide nanoparticles dispersed diesel[J]. Energy, 2017, 113: 113- 124
[12]   缪雪龙, 郑金保, 洪建海, 等 交叉喷孔喷油嘴喷雾特性的试验[J]. 内燃机学报, 2012, 30 (5): 435- 439
MIAO Xue-long, ZHENG Jin-bao, HONG Jian-hai, et al Spray characteristics of crossing hole in diesel nozzle[J]. Transactions of Chinese Society for Internal Combustion Engines, 2012, 30 (5): 435- 439
[13]   赵宏中, 张彦超 基于Canny边缘检测算子的图像检索算法[J]. 电子设计工程, 2010, 18 (2): 75- 77
ZHAO Hong-zhong, ZHANG Yan-chao Image retrieval algorithm based on Canny edge detection operator[J]. Electronic Design Engineering, 2010, 18 (2): 75- 77
doi: 10.3969/j.issn.1674-6236.2010.02.027
[14]   SHERVANITABAR M T, SHEYKHVAZAYEFI M, GHORBANI M Numerical study on the effect of the injection pressure on spray penetration length[J]. Applied Mathematical Modeling, 2013, 37 (14): 7778- 7788
[1] LV Jun-xiang, LIU Jun-heng, SUN Ping, SU Wen-bo, MENG Jian, WAN Yao-feng. Effects of discharge reactor condition on charge-mass ratio of diesel particles[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2414-2419.
[2] LIU Chang-cheng, LI Wen-hui, ZHANG Wen-ping, XIA Wen, ZHANG Zi-jian, ZHOU Yao-feng. Research on performance of waste heat utilization system of large marine diesel engine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2259-2264.
[3] WANG Yu-mei, SUN Ping, FENG Hao-jie, LIU Jun-heng, JI Qian. Particulate emission characteristics of diesel engine fueled with diesel and Fe-FBC blends[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1981-1987.
[4] XU Hui, CAI Yi xi, LI Xiao hua, SHI Yun xi, LI Wei jun. Experimental study on reduction of particle and nitrogen oxide emissions of diesel engine by non-thermal plasma[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2418-2423.
[5] YU Qian, LI Tie zhu, REN Yan ming. Influence of passenger load on diesel bus emission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 2009-2017.
[6] MA Jian, XIE Yang, LUO Qi-yuan, XU Cang-su. Performance of diesel engine running on diesel fuel and its blends with refined biomass fast pyrolysis bio-oil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 632-637.
[7] WAN Yi, HUANG Wei-wei, ZHENG Cheng-hang, GAO Xiang, CEN Ke-fa. Spray characteristics of wet electrostatic precipitator[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 336-343.
[8] FANG Yi dong, LOU Di ming, HU Zhi yuan, TAN Pi qiang. Effects of continuously regenerating particulate filter on PM and NOx emission from bio diesel engine[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1836-1841.
[9] XIE Yang, MA Jian, LUO Qi yuan, XU Cang su. Research on exhaust emissions with methyl oleate diesel fuel[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1849-1854.
[10] YAO Shui-liang, ZHAO Yi-fan, ZHANG Yuan, NI Jie-cao, WU Zu-liang. Treatment of particle material from diesel exhaust using multilayer dielectric barrier discharge[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 157-161.
[11] ZHANG Huan-yu, HAO Zhi-yong, ZHENG Xu. Optimization design of heat transfer performance for diesel cooling water jacket[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 70-75.
[12] ZHANG Huan-yu, HAO Zhi-yong, ZHENG Xu. Study of NVH performance improvement for a four-cylinder diesel engine body [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 895-900.
[13] WANG Hai-tao, YANG Wei-juan, ZHOU Jun-hu, WANG Zhi-hua, LIU Jian-zhong,CEN Ke-fa. Calculation and analysis on evaporation and mixing characteristics
of droplets in high temperature flue
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 878-884.
[14] JING Guo-xi, HAO Zhi-yong, YANG Ji. Study on analysis of ring-pack lubricating oil consumption
and improved design
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 2002-2007.
[15] YANG Chen, HAO Zhi-Yong, CHEN Xin-Juan. Thermal load influence on stress intensity and
sealing performance of diesel engine
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 756-760.