Computer Science and Artificial Intelligence |
|
|
|
|
Screening and bioinformatics analysis of lung cancer exhale breath biomarkers |
Qian WU( ),Ping WANG*( ) |
Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The exhale breath detection combined bioinformatics analysis method, including transcriptome, metabolic pathway and protein structure, was proposed to identify gas markers for screening and diagnosis of lung cancer. Lung cancer patients and healthy controls' samples were collected to performe GC-MS and ROC curve analysis which obtained ten specific VOCs. Differentially expressed genes were obtained by transcriptome analysis. The differentially expressed genes and relative metabolic pathways were consistent with in vivo biological process, which meant that these VOCs come from the metabolism of lung cancer patient. The sensitivity, specificity and overall accuracy of lung cancer diagnosis model established based on VOCs were 86.2%, 91.2% and 89.6%, respectively. Thus, the proposed method can distinguish normal people and lung cancer patients simply and effectively, providing convenient approach for early screening of lung cancer.
|
Received: 03 October 2018
Published: 17 December 2019
|
|
Corresponding Authors:
Ping WANG
E-mail: qianwu@zju.edu.cn;cnpwang@zju.edu.cn
|
肺癌呼吸标志物筛选及其生物信息学分析
采用结合转录组、代谢通路、蛋白结构的呼出气体检测生物信息学分析方法来确定肺癌气体标志物,用于肺癌的筛选诊断. 采用标准仪器(GCMS)检测肺癌病人和正常人的呼吸气体样本;经统计分析,筛选出10种特异性挥发性有机物(VOC). 采用转录组分析得到肺癌和健康人的差异表达基因,其富集的代谢通路与人体内产生VOC的代谢通路一致,证明所筛选的VOC标志物与肺癌病人代谢具有相关性. 基于此VOC建立的肺癌诊断模型的灵敏度、特异性和整体正确率分别为86.2%,91.2% 和89.6%,说明所提方法能简便、有效区分正常人和肺癌病人,为早期肺癌筛查提供方便、可靠的检测方法.
关键词:
呼出气体检测,
肺癌标志物,
生物信息学,
转录组分析,
蛋白结构分析,
肺癌早期筛查
|
|
[1] |
CHEN X, XU F, WANG Y, et al A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis[J]. Cancer, 2007, 110 (4): 835- 844
doi: 10.1002/cncr.22844
|
|
|
[2] |
WANG Y, HU Y, WANG D, et al The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines[J]. Cancer Biomarkers, 2012, 11 (4): 129- 137
doi: 10.3233/CBM-2012-00270
|
|
|
[3] |
HAKIM M, BROZA Y Y, BARASH O, et al Volatile organic compounds of lung cancer and possible biochemical pathways[J]. Chemical Reviews, 2012, 112 (11): 5949- 5966
doi: 10.1021/cr300174a
|
|
|
[4] |
TOMCZAK K, CZERWINSKA P, WIZNEROWICZ M The cancer genome atlas (TCGA): an immeasurable source of knowledge[J]. Contemporary Oncology, 2015, 19 (1A): A68- 77
|
|
|
[5] |
LI T, KUNG H J, MACK P C, et al Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies[J]. International Journal of Clinical Oncology, 2013, 31 (8): 1039- 1049
doi: 10.1200/JCO.2012.45.3753
|
|
|
[6] |
NETWORK CGAR Comprehensive genomic characterization of squamous cell lung cancers[J]. Nature, 2012, 489 (7417): 519- 525
doi: 10.1038/nature11404
|
|
|
[7] |
VOGELSTEIN B, PAPADOPOULOS N, VELCULESCU V E, et al Cancer genome landscapes[J]. Science, 2013, 339 (6127): 1546- 1558
doi: 10.1126/science.1235122
|
|
|
[8] |
ZOU Y, ZHANG X, CHEN X, et al Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease[J]. Cancer Biomarkers, 2014, 14 (5): 371- 379
doi: 10.3233/CBM-140418
|
|
|
[9] |
PARK S H, GOO J M, JO C H Receiver operating characteristic (ROC) curve: practical review for radiologists[J]. Korean Journal of Radiology, 2004, 5 (1): 11- 18
doi: 10.3348/kjr.2004.5.1.11
|
|
|
[10] |
MCCARTHY D J, CHEN Y, SMYTH G K Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation[J]. Nucleic Acids Research, 2012, 40 (10): 4288- 4297
doi: 10.1093/nar/gks042
|
|
|
[11] |
ANDERS S, HUBER W Differential expression analysis for sequence count data[J]. Genome Biology, 2010, 11 (10): R106- 106
doi: 10.1186/gb-2010-11-10-r106
|
|
|
[12] |
ANDERS S, MCCARTHY D J, CHEN Y, et al Count-based differential expression analysis of RNA sequencing data using R and Bioconductor[J]. Nature Protocols, 2013, 8 (9): 1765- 1786
doi: 10.1038/nprot.2013.099
|
|
|
[13] |
XIE C, MAO X, HUANG J, et al KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39 (2): W316- 322
doi: 10.1093/nar/gkr483
|
|
|
[14] |
王怡珊. 肺癌呼出气体标志物确定及电子鼻临床诊断方法研究[D]. 杭州: 浙江大学, 2012. WANG Yi-shang. The research on lung cancer biomarkers in exhaled breath and clinical diagnostic method of e-nose [D]. Hangzhou: Zhejiang University, 2012.
|
|
|
[15] |
LOUREN?O C, TURNER C Breath analysis in disease diagnosis: methodological considerations and applications[J]. Metabolites, 2014, 4 (2): 465- 498
doi: 10.3390/metabo4020465
|
|
|
[16] |
DE MONTELLANO PRO. Cytochrome P450: structure, mechanism, and biochemistry [M]. 3th ed. Berlin/Heidelberg: Springer Science and Business Medical, 2005.
|
|
|
[17] |
VAZ A, COON M J Hydrocarbon formation in the reductive cleavage of hydroperoxides by cytochrome P-450[J]. Proceedings of the National Academy of Sciences, 1987, 84 (5): 1172- 1176
doi: 10.1073/pnas.84.5.1172
|
|
|
[18] |
KISCHKEL S, MIEKISCH W, SAWACKI A, et al Breath biomarkers for lung cancer detection and assessment of smoking related effects-confounding variables, influence of normalization and statistical algorithms[J]. Clinica Chimica Acta, 2010, 411 (21/22): 1637- 1644
doi: 10.1016/j.cca.2010.06.005
|
|
|
[19] |
GUENGERICH F P, SHIMADA T Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymes[J]. Chemical Research in Toxicology, 1991, 4 (4): 391- 407
doi: 10.1021/tx00022a001
|
|
|
[20] |
WHITE J A, BECKETT-JONES B, GUO Y D, et al cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450(CYP26)[J]. Journal of Biological Chemistry, 1997, 272 (30): 18538- 18541
doi: 10.1074/jbc.272.30.18538
|
|
|
[21] |
EDSON K Z, PRASAD B, UNADKAT J D, et al Cytochrome P450-dependent catabolism of vitamin K: ω-hydroxylation catalyzed by human CYP4F2 and CYP4F11[J]. Biochemistry, 2013, 52 (46): 8276- 8285
doi: 10.1021/bi401208m
|
|
|
[22] |
CHRISTMAS P, JONES J P, PATTEN C J, et al Alternative splicing determines the function of CYP4F3 by switching substrate specificity[J]. Journal of Biological Chemistry, 2001, 276 (41): 38166- 381672
|
|
|
[23] |
COROMINAS-FAJA B, OLIVERAS-FERRAROS C, CUYàS E, et al Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin[J]. Cell Cycle, 2013, 12 (21): 3390- 3404
doi: 10.4161/cc.26417
|
|
|
[24] |
ABOUZEID H, FAVEZ T, SCHMID A, et al Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families[J]. Human Mutation, 2014, 35 (8): 949- 953
doi: 10.1002/humu.22580
|
|
|
[25] |
ADZHUBEI I A, SCHMIDT S, PESHKIN L, et al A method and server for predicting damaging missense mutations[J]. Nature Methods, 2010, 7 (4): 248- 249
doi: 10.1038/nmeth0410-248
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|