Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2325-2334    DOI: 10.3785/j.issn.1008-973X.2019.12.009
Civil Engineering, Hydraulic Engineering     
Motion characteristics of cataclastic rockslides and change rules of impulse waves in near-field zone
Lin-feng HAN1,2(),Ping-yi WANG2,*(),Mei-li WANG3,Yun LIU4
1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2. National Engineering Technology Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 400074, China
3. School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China
4. Chongqing Industry Polytechnic College, Chongqing 401120, China
Download: HTML     PDF(1806KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Forty-eight field data of parameters and fracture developments of typical rockslides in Three Gorges Reservoir were collected. On the basis of following similar guidelines, a three-dimensional physical model of impulse waves generated by cataclastic rockslides in shallow water area was established based on the topography data of the Wanzhou Rive section. In terms of many model tests, measure movement characteristics on the water of rockslides with different shapes and volumes, landslide submergence ratio and maximum near-field wave amplitude. The testing results show that the fractured rock mass produces a velocity gradient along the landslide thickness direction, causing the rock mass to slide layer by layer to the water. The maximum landslide thickness decreases exponentially with the increasing sliding distance. In addition, when the submergence ratio is less than the landslide limit submergence ratio, the near-field amplitudes will decrease sharply with decreasing water depth. The predictive equations were derived using a multi-variable regression analysis of the dimensionless parameters, giving the attenuation equation for the maximum landslide thickness, the empirical equation for landslide submergence ratio and the predictive equation for maximum near-field wave amplitude generated by three-dimensional shallow-water rock landslide. The applicability of predictive equations is validated by the field observation data of Hongyanzi and Gongjiafang cases.



Key wordscataclastic rockslide      motion characteristic      landslide-generated wave in shallow water      maximum near-field wave amplitude      submergence ratio     
Received: 08 October 2018      Published: 17 December 2019
CLC:  P 642  
Corresponding Authors: Ping-yi WANG     E-mail: linfengyue@126.com;py-wang@163.com
Cite this article:

Lin-feng HAN,Ping-yi WANG,Mei-li WANG,Yun LIU. Motion characteristics of cataclastic rockslides and change rules of impulse waves in near-field zone. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2325-2334.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.009     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2325


碎裂岩体滑坡运动特征及近场涌浪变化规律

收集三峡库区48组典型岩体滑坡参数及裂隙发育情况,在遵循相似准则的基础上,结合万州河段地形资料建立浅水区碎裂岩体滑坡涌浪三维物理模型. 通过多组模型试验,测定不同形状及方量的岩体滑坡水上运动特征以及滑坡淹没率对近场涌浪最大波幅的影响. 结果表明:破碎后的岩体滑坡沿厚度方向产生速度梯度,使得滑坡体分层滑向水面,且滑坡最大厚度随着滑动距离的增加呈指数衰减;当滑坡淹没率小于极限淹没率时,近场涌浪最大波幅随着水深的减小而急剧降低. 通过对无量纲参数的多元回归分析,建立碎裂岩体滑坡最大厚度衰减公式、浅水区滑坡淹没率经验公式以及三维涌浪近场最大波幅的预测方程. 红岩子滑坡和龚家坊滑坡现场观测资料分析结果验证了方程在浅水中的有效性.


关键词: 碎裂岩体滑坡,  运动特征,  浅水区滑坡涌浪,  近场最大波幅,  淹没率 
Fig.1 Formation and evolution of rock landslide
Fig.2 Sketch map of rock mass separation
Fig.3 Crack spacing distribution of typical rock landslides in Three Gorges Reservoir
块体编号 l/cm w/cm s/cm 块体编号 l/cm w/cm s/cm
A1 (D100) 18 12 6 A4 (D40) 6 4 2
A2 (D80) 12 8 4 A5 (D10) 3 2 1
A3 (D60) 9 6 3 ? ? ? ?
Tab.1 Dimensions of rigid blocks of landslide model
Fig.4 Photo of rockslide model
Fig.5 Experimental setup for impulse waves generated by three-dimensional rock landslide
Fig.6 Ultrasonic wave gage and recorded wave profiles
Fig.7 Evolution process of rock landslide thicknesses
Fig.8 Landslide thickness in different sections varies with time
Fig.9 Maximum landslide thickness varies with sliding distance
Fig.10 Comparison of measured and predicted dimensionless maximum slide thickness
Fig.11 Evolution process of length of rock landslid
Fig.12 Maximum slide length varies with sliding distance
Fig.13 Schematic of impulse wave generation zone and splash zone distribution
Fig.14 Rock mass deposition above water caused by landslide into shallow water
Fig.15 Sketch map of landslide not completely submerged after deposition
滑坡参数 数值 单位
红岩子滑坡 龚家坊滑坡
b 130 194 m
s 10 15 m
l 130 294 m
α 34 53 (°)
h 25 140 m
vm 2.5 11.65 m/s
V 230 000 380 000 m3
R' 70~75 100 %
am 5.8~6.0 31.8 m
Tab.2 Observed landslide parameter values in Hongyanzi/Gongjiafang
Fig.16 Relationship between maximum near-field wave amplitude and water depth
[1]   MOHAMMED F, FRITZ H M Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[J]. Journal of Geophysical Research: Oceans, 2012, 117 (11): 116- 136
[2]   HUANG B L, WANG S C, ZHAO Y B Impulse waves in reservoirs generated by landslides into shallow water[J]. Coastal Engineering, 2017, (123): 52- 61
[3]   CROSTA G B, IMPOSIMATO S, RODDEMAN D Landslide spreading, impulse water waves and modelling of the vajont rockslide[J]. Rock Mechanics and Rock Engineering, 2015, (6): 1- 24
[4]   WANG W, CHEN G Q, YIN K L, et al Modeling of landslide generated impulsive waves considering complex topography in reservoir area[J]. Environmental Earth Sciences, 2016, 75 (5): 372- 380
doi: 10.1007/s12665-016-5252-y
[5]   WATTS P Tsunami features of solid block underwater landslides[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2000, 126 (3): 144- 152
doi: 10.1061/(ASCE)0733-950X(2000)126:3(144)
[6]   SAELEVIK G, JENSEN A, PEDERSEN G Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway[J]. Coastal Engineering, 2009, 56 (9): 897- 906
doi: 10.1016/j.coastaleng.2009.04.007
[7]   HELLER V, SPINNEKEN J Improved landslide-tsunami prediction: effects of block model parameters and slide model[J]. Journal of Geophysical Research: Oceans, 2013, 118 (3): 1489- 1507
doi: 10.1002/jgrc.20099
[8]   DIRISIO M, DEGIROLAMO P, BELLOTTI G, et al Landslide-generated tsunamis runup at the coast of a conical island: New physical model experiments[J]. Journal of Geophysical Research: Oceans, 2009, 114 (1): 66- 83
[9]   PANIZZO A, DEGIROLAMO P, PETACCIA A Forecasting impulse waves generated by subaerial landslides[J]. Journal of Geophysical Research: Oceans, 2005, 110 (12): 1- 23
[10]   LINDSTR?M E K, PEDERSEN G K, JENSEN A, et al Experiments on slide generated waves in a 1:500 scale fjord model[J]. Coastal Engineering, 2014, 92 (4): 12- 23
[11]   ROMANO A, DIRISIO M, BELLOTTI G, et al Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation[J]. Landslides, 2016, 13 (6): 1- 15
[12]   岳书波, 刁明军, 王磊 滑坡涌浪的初始形态及其衰减规律的研究[J]. 水利学报, 2016, 47 (6): 816- 825
YUE Shu-bo, DIAO Ming-jun, WANG Lei Research on initial formation and attenuation of landslide-generated waves[J]. Journal of Hydraulic Engineering, 2016, 47 (6): 816- 825
[13]   FRITZ H M, HAGER W H, MINOR H E Near field characteristics of landslide generated impulse waves[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2004, 130 (6): 287- 302
doi: 10.1061/(ASCE)0733-950X(2004)130:6(287)
[14]   ZWEIFEL A, HAGER W H, MINOR H E Plane impulse waves in reservoirs[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2006, 132 (5): 358- 368
doi: 10.1061/(ASCE)0733-950X(2006)132:5(358)
[15]   HELLER V. Landslide generated impulse waves: prediction of near field characteristics[D]. Zurich: ETH Zurich, 2007.
[16]   MILLER G S, TAKE W A, MULLIGAN R P, et al Tsunamis generated by long and thin granular landslides in a large flume[J]. Journal of Geophysical Research: Oceans, 2017, 122 (1): 653- 668
doi: 10.1002/2016JC012177
[17]   MCFALL B C, FRITZ H M Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes[J]. Proceedings of the Royal Society A, 2016, 472 (4): 1- 24
[18]   HUANG B L, YIN Y P, WANG S C, et al A physical similarity model of an impulsive wave generated by Gongjiafang landslide in Three Gorges Reservoir, China[J]. Landslides, 2014, 11 (3): 513- 525
doi: 10.1007/s10346-013-0453-x
[19]   MCFALL B C, FRITZ H M Runup of granular landslide generated tsunamis on planar coasts and conical islands[J]. Journal of Geophysical Research: Oceans, 2017, 122 (8): 6901- 6922
doi: 10.1002/2017JC012832
[20]   VIROULET S, CéBRON D, KIMMOUN O, et al Shallow water waves generated by subaerial solid landslides[J]. Geophysical Journal International, 2013, 193 (2): 747- 762
doi: 10.1093/gji/ggs133
[21]   吴越, 刘东升, 李明军 岩体滑坡冲击能计算及受灾体易损性定量评估[J]. 岩石力学与工程学报, 2011, 30 (5): 901- 909
WU Yue, LIU Dong-sheng, LI Ming-jun Impact energy calculation for rock slope and quantitative assessment of vulnerability for element at risk[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (5): 901- 909
[22]   MARGIELEWSKI W, URBAN J Crevice-type caves as initial forms of rock landslide development in the Flysch Carpathians[J]. Geomorphology, 2003, 54 (4): 325- 338
[23]   HELLER V, BRUGGEMANN M, SPINNEKEN J, et al Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics[J]. Coastal Engineering, 2016, (109): 20- 41
[24]   HUANG B L, YIN Y P, DU C L Risk management study on impulse waves generated by Hongyanzi landslide in Three Gorges Reservoir of China on June 24, 2015[J]. Landslides, 2016, 13 (3): 603- 616
doi: 10.1007/s10346-016-0702-x
[25]   GRILLI S T, SVENDSEN I A, SUBRAMANYA R Breaking criterion and characteristics for solitary waves on slopes[J]. Journal of Waterway Port Coastal and Ocean Engineering, 1997, 123 (3): 102- 112
doi: 10.1061/(ASCE)0733-950X(1997)123:3(102)
[26]   韩林峰, 王平义 基于动量平衡的三维滑坡涌浪最大近场波幅预测[J]. 岩石力学与工程学报, 2018, 37 (11): 165- 173
HAN Lin-feng, WANG Ping-yi Prediction of maximum near-field wave amplitude of impulse wave generated by three-dimensional landslide based on momentum balance[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (11): 165- 173
[1] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.
[2] Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.
[3] PENG Ling, NIU Rui-qing, WU Ting. Time series analysis and support vector machine for landslide displacement prediction[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1672-1679.
[4] ZHAO Quan-li, SUN Hong-yue, SHANG Yue-quan, WANG Zhi-lei. Effect of temporal and spatial variation of pore water pressure induced by confined groundwater on slope stability[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1366-1372.
[5] WANG Zhi-lei, SUN Hong-yue, SHANG Yue-quan, ZHAO Quan-li. Assessment for backwater amount in unsaturated zone in landslide in rainfall process[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1088-1096.
[6] CHEN Bao, ZHANG Hui-xin, CHEN Ping. Influence of hyper-alkaline solution infiltration on microscopic pore structure of compacted GMZ bentonite[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 602-608.
[7] WANG Yong, KONG Lian-Wei, GUO Ai-Guo, BAI Wei. Effects of gas release rate on gaswater migration in
shallow gas reservoir
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1883-1889.