Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1927-1935    DOI: 10.3785/j.issn.1008-973X.2019.10.010
Civil Engineering     
Mechanical properties of circular steel tube filled withfoam concrete under axial loads
Xu-dong ZHI1,2(),Meng-hui GUO1,2(),Chen WANG1,2,Qi-jian WU1,2
1. Key Laboratory of Structural Engineering Disaster Control of Education Ministry, Harbin Institute of Technology, Harbin 150090, China
2. Key Laboratory of Civil Engineering Intelligent Disaster Prevention and Mitigation Control of Ministry of Industry and Information, Harbin Institute of Technology, Harbin 150090, China
Download: HTML     PDF(3259KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mechanical property of circular steel tube filled with foam concrete under axially compressive loads was analyzed with both experimental and numerical methods. The energy dissipation capacity of short column members and the axial load bearing capacity of long column members were analyzed by axial compressive experiments. Results showed that short column members failed with progressive folding and energy dissipation increased with the increase of foam concrete density. In the case of long column members, the overall instability failure occured, and the stable bearing capacity increased with the increase of foam concrete density. A numerical model based on ABAQUS Explicit solver was proposed, and the simulation results agreed well with the experimental results. The effects of foam concrete density, diameter-to-thickness ratio and slenderness ratio to specimen’s bearing capacity were analyzed. Results showed that the bearing capacity of long column members decreased with the increase of the diameter-to-thickness ratio and slenderness ratio, while increased with the increase of density of the filled foam concrete. A formula of stability capacity of long column members was derived based on the Perry-Robertson formula. The calculation results of the formula show that this formula can predict the axial load bearing capacity of long column members well.



Key wordsfoam concrete      circular steel tube      axial loaded      stability      Perry-Robertson     
Received: 28 August 2018      Published: 30 September 2019
CLC:  TU 323  
Cite this article:

Xu-dong ZHI,Meng-hui GUO,Chen WANG,Qi-jian WU. Mechanical properties of circular steel tube filled withfoam concrete under axial loads. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1927-1935.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.010     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1927


泡沫混凝土填充圆钢管的轴压力学性能

采用试验和有限元模拟方法,研究泡沫混凝土填充圆钢管构件在轴压荷载作用下的力学性能. 通过轴压试验,分析短柱构件的耗能能力和长柱构件的轴压承载力,短柱构件发生叠缩破坏变形模式,耗能能力随着泡沫混凝土密度的提高而显著增强,长柱构件发生整体失稳破坏,稳定承载力随着泡沫混凝土密度的增大而增大. 基于ABAQUS的Explicit求解器,建立泡沫混凝土填充圆钢管构件的数值模型,获得的模拟结果与试验结果吻合良好. 开展参数分析,讨论径厚比、长细比及填充泡沫混凝土密度等因素对长柱构件承载能力的影响. 研究结果表明:长柱构件的稳定承载力随着长细比和径厚比的增大而减小,随着填充的泡沫混凝土密度的增大而增大. 基于Perry-Robertson公式,推导了泡沫混凝土填充圆钢管长柱构件的稳定承载力公式. 预测结果表明,该公式能够很好地预测长柱构件的稳定承载力.


关键词: 泡沫混凝土,  圆钢管,  轴压,  稳定性,  Perry-Robertson 
ρ/(kg·m?3) m(水泥)/g m(水)/g m(泡沫)/g m(减水剂)/g
500 2 500 475 92.96 15
900 3 500 666.67 80.11 22.22
Tab.1 Mix proportion of foam concrete
Fig.1 Cross section of circular steel tube filled with foam concrete
编号 ρ/(kg·m?3) D/t λ
FS1-100-500 500 58 ?
FS1-100-900 900 58 ?
FS2-100-500 500 29 ?
FS2-100-900 900 29 ?
FS1-900-500 500 58 44.65
FS1-900-900 900 58 44.65
FS1-1200-500 500 58 59.54
FS1-1200-900 900 58 59.54
FS2-900-500 500 29 45.43
FS2-900-900 900 29 45.43
FS2-1200-500 500 29 60.57
FS2-1200-900 900 29 60.57
Tab.2 Geometric parameters of circular steel tube filled with foam concrete
t/mm σy /MPa σu /MPa Es /GPa εu
1 326.78 504.80 196 0.181
2 255.77 431.01 201 0.182
Tab.3 Material parameters of steel tube
ρo /(kg·m?3) ρ /(kg·m?3) fc /MPa Ef /MPa
500 500 1.02 270
900 851 3.08 417
Tab.4 Material parameters of foam concrete
Fig.2 Loading device for short column specimens
Fig.3 Loading device for long column specimens
Fig.4 Failure modes of short column specimens
Fig.5 Axial load-displacement curves of short column specimens
Fig.6 Failure modes of long column specimens
Fig.7 Axial load-displacement curves of long column specimens
Fig.8 Finite element model of circular steel tube filled with foam concrete
Fig.9 Comparision of deformation between numerical and experimental results
Fig.10 Comparision of N-Δ curves between numerical and experimental results
编号 Fue /kN Fua /kN ξ1 /%
FS1-100-500 81.49 87.09 6.87
FS1-100-900 84.25 91.33 8.40
FS2-100-500 121.28 127.16 4.84
FS2-100-900 132.37 133.00 0.47
FS1-900-500 56.63 55.05 ?2.79
FS1-900-900 60.27 62.51 3.72
FS2-900-500 78.34 75.82 ?3.21
FS2-900-900 92.68 88.51 ?4.50
FS1-1200-500 46.38 46.70 0.68
FS1-1200-900 50.80 52.79 3.92
FS2-1200-500 68.61 67.83 ?1.13
FS2-1200-900 79.81 75.25 ?5.70
Tab.5 Ultimate load comparison between simulation and experimental results
kN
Fsteel-1.0 Fsteel-2.0 Ffoam-500 Ffoam-900
61.78 112.4 2.69 8.13
Tab.6 Bearing capacity of each part of material
%
编号 Fsteel/F Ffoam/F Fint/F
FS1-100-500 70.93 3.09 26.38
FS1-100-900 67.64 8.90 24.23
FS2-100-500 88.39 2.12 9.49
FS2-100-900 84.51 6.11 9.38
Tab.7 Contribution of each part of the material to ultimate bearing capacity
Fig.11 Relationship of stable load and slenderness ratio
Fig.12 Relationship of stable load and diameter to thickness ratio
Fig.13 Properties of foam concrete
Fig.14 Relationship of stable load and concrete density
编号 Fcre /kN Fcrp /kN ξ2 /%
FS5810-900-500 56.63 57.13 0.88
FS5810-900-900 60.27 60.11 ?0.27
FS5810-1200-500 46.38 45.55 ?1.79
FS5810-1200-900 50.80 47.90 5.71
FS5820-900-500 78.34 82.34 5.11
FS5820-900-900 92.68 83.38 ?10.03
FS5820-1200-500 68.61 71.78 4.62
FS5820-1200-900 79.81 72.16 ?9.59
Tab.8 Predicted stable load of long column members compared with experimental value
[1]   于英华, 吴雪娜, 郎国军 泡沫铝汽车碰撞吸能器仿真分析[J]. 世界科技研究与发展, 2012, 34 (2): 184- 187
YU Ying-hua, WU Xue-na, LANG Guo-jun Simulation analysis of automobile collision energy-absorber[J]. World Science-Technology Research and Development, 2012, 34 (2): 184- 187
[2]   KRETZ R, HAUSBERGER K, G?TZINGER B Energy-absorbing behavior of aluminum foams: head impact tests on the A-Pillar of a car[J]. Advanced Engineering Materials, 2002, 4 (10): 781- 785
doi: 10.1002/1527-2648(20021014)4:10<781::AID-ADEM781>3.0.CO;2-U
[3]   BAROUTAJI A, GILCHRIST M D, SMYTH D, et al Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading[J]. Thin-Walled Structures, 2015, 86: 121- 131
doi: 10.1016/j.tws.2014.08.018
[4]   YUEN S C K, NURICK G N, WITBEEN H L The response of sandwich panels made of thin-walled tubes subjected to axial load[J]. International Journal of Protective Structures, 2011, 2 (4): 477- 498
doi: 10.1260/2041-4196.2.4.477
[5]   B?RVIK T, HOPPERSTAD O S, REYES A, et al Empty and foam-filled circular aluminum tubes subjected to axial and oblique quasistatic loading[J]. International Journal of Crashworthiness, 2003, 8 (5): 481- 494
doi: 10.1533/ijcr.2003.0254
[6]   黄炼, 吕志强, 赵应龙 泡沫铝填充圆管轴向动力屈曲及吸能特性研究[J]. 舰船科学技术, 2009, 31 (8): 55- 59
HUANG Lian, LV Zhi-qiang, ZHAO Ying-long Studies on the asial dynamical buckling and energy absorption properties of aluminum foam-filled circular tubes[J]. Ship Science and Technology, 2009, 31 (8): 55- 59
[7]   REZAEI B, NIKNEJAD A, ASSAEE H, et al Axial splitting of empty and foam-filled circular composite tubes: an experimental study[J]. Archives of Civil and Mechanical Engineering, 2015, 15 (3): 650- 662
doi: 10.1016/j.acme.2014.09.003
[8]   REZVANI M J, JAFARIAN B An experimental investigation on energy absorption of thin-walled bitubal structures by inversion and axial collapse[J]. International Journal of Mechanical Sciences, 2017, 126: 270- 280
doi: 10.1016/j.ijmecsci.2017.03.005
[9]   RAZAZAN M, REZVANI M J, SOUZANGARZADEH H Evaluation of the performance of initiator on energy absorption of foam-filled rectangular tubes: experimental and numerical assessment[J]. Experimental Techniques, 2017, 42 (9): 1- 11
[10]   REID S R, REDDY T Y, GRAY M D Static and dynamic axial crushing of foam-filled sheet metal tubes[J]. International Journal of Mechanical Sciences, 1986, 28 (5): 295- 322
doi: 10.1016/0020-7403(86)90043-3
[11]   桂良进, 范子杰, 王青春 泡沫填充圆管的轴向压缩能量吸收特性[J]. 清华大学学报: 自然科学版, 2003, 43 (11): 1526- 1529
GUI Liang-jin, FAN Zi-jie, WANG Qing-chun Energy-absorption properties of foam-filled circular tubes subjected to axial crushing[J]. Journal of Tsinghua University: Science and Technology, 2003, 43 (11): 1526- 1529
[12]   程涛, 向宇, 李健, 等 泡沫铝填充多棱管的吸能分析[J]. 振动与冲击, 2011, 30 (9): 237- 242
CHENG Tao, XIANG Yu, LI Jian, et al Energy absorption analysis of foamed aluminum-filled prisms[J]. Journal of Vibration and Shock, 2011, 30 (9): 237- 242
doi: 10.3969/j.issn.1000-3835.2011.09.049
[13]   张景飞, 冯明德, 陈金刚 泡沫混凝土抗爆性能的试验研究[J]. 混凝土, 2010, 10: 10- 12
ZHANG Jing-fei, FENG Ming-de, CHEN Jin-gang Study on the knock characteristic of foam concrete[J]. Concrete, 2010, 10: 10- 12
doi: 10.3969/j.issn.1000-4637.2010.04.003
[14]   YUAN Pu, MA Qin-yong, ZHANG Hai-dong Energy disspation analyses on light-weight foam concrete under impact loads[J]. Electronic Journal of Geotechnical Engineering, 2014, 19: 8667- 8675
[15]   王代华, 刘殿书, 杜玉兰, 等 含泡沫吸能层防护结构爆炸能量分布的数值模拟研究[J]. 爆炸与冲击, 2006, 26 (6): 562- 567
WANG Dai-hua, LIU Dian-shu, DU Yu-lan, et al Numerical simulation of anti-blasting mechanism and energy distribution of composite protective structure with foam concrete[J]. Explosion and Shock Waves, 2006, 26 (6): 562- 567
doi: 10.3321/j.issn:1001-1455.2006.06.015
[16]   杨先锋, 张志强, 杨嘉陵, 等 飞机泡沫混凝土道面拦阻系统的阻滞性能研究[J]. 兵工学报, 2017, 38 (增1): 155- 162
YANG Xian-feng, ZHANG Zhi-qiang, YANG Jia-ling, et al Research on retardation performance of aircraft foamed concrete arreesting system[J]. Acta Armamentarii, 2017, 38 (增1): 155- 162
[17]   BARDI F C, KYRIAKIDES S Plastic buckling of circular tubes under axial compression—part I: experiments[J]. International Journal of Mechanical Sciences, 2006, 48 (8): 830- 841
doi: 10.1016/j.ijmecsci.2006.03.005
[18]   BARDI F C, KYRIAKIDES S, YUN H D Plastic buckling of circular tubes under axial compression—part II: analysis[J]. International Journal of Mechanical Sciences, 2006, 48 (8): 842- 854
doi: 10.1016/j.ijmecsci.2006.03.002
[19]   李应权, 朱立德, 李菊丽, 等 泡沫混凝土配合比的设计[J]. 徐州工程学院学报, 2011, 26 (2): 1- 5
LI Ying-quan, ZHU Li-de, LI Ju-li, et al Study on mix ratio design of foamed concrete[J]. Journal of Xuzhou Institute of Technology, 2011, 26 (2): 1- 5
doi: 10.3969/j.issn.1674-3571-B.2011.02.001
[20]   金属材料室温拉伸试验方法: GB/T 228-2010 [S]. 北京: 中国标准出版社, 2010.
[21]   钢及钢产品力学性能试验取样位置及试样制备: GB/T 2975-1998 [S]. 北京: 中国标准出版社, 1998.
[22]   泡沫混凝土行业标准: JG/T 266-2011 [S]. 北京: 中国标准出版社, 2011.
[23]   GUILLOW S R, LU G, GRZEBIETA R H Quasi-static axial compression of thin-walled circular aluminum tubes[J]. International Journal of Mechanical Sciences, 2001, 43 (9): 2103- 2123
doi: 10.1016/S0020-7403(01)00031-5
[24]   熊耀清, 姚谦峰 轻质多孔混凝土受压应力-应变全曲线试验研究[J]. 四川建筑科学研究, 2010, 36 (2): 228- 232
XIONG Yao-qing, YAO Qian-feng Experimental study on the total stress-strain curve of porous lightweight concrete[J]. Sichuan Building Science, 2010, 36 (2): 228- 232
doi: 10.3969/j.issn.1008-1933.2010.02.059
[25]   陈骥. 钢结构稳定理论与设计[M]. 北京: 科学出版社, 2001.
[26]   何书明. 泡沫混凝土本构关系的研究 [D]. 吉林: 吉林建筑大学, 2014.
HE Shu-ming. Research about the constitutive relation of foam concrete [D]. Jilin: Jilin University of Architecture, 2014.
[1] Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.
[2] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[3] Chi QIU,Jian-kun HUANG,Yu-cun HU,Xiao-ping GUO,Yun-qing HU. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: a case study of Xinxing coal mine, Wuhai[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1467-1477.
[4] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[5] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[6] Guo-jun WANG,Hong-guo XU,Hong-fei LIU. Handling stability analysis of B-double[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 299-306.
[7] Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.
[8] Chao-ying XIA,Gang WU,Jia-li YU. Design of modular multilevel converter control system based on uniformly asymptotically stable observer[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2238-2247.
[9] Qian-ting ZHAO,Jian-yong YAO,Zhi-kai YAO. Finite time disturbance observer based robust integral tracking control[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1874-1882.
[10] Xie-lian ZHU,Shi-lin DONG. Configuration, static and stability behavior of hyperboloidal cooling tower lattice shell composed of six-bar tetrahedral units[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1907-1915.
[11] ZHOU Chi, LI Ying-hui, ZHENG Wu-ji, WU Peng-wei, DONG Ze-hong. Study on stability region determination and algorithm characteristics of power system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 200-206.
[12] LIU Yun, DONG Guan-hua, YIN Guo-fu. Vibration analysis and structural optimization of non-contact seal[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1390-1397.
[13] GONG Shun-feng, WANG Xi-peng, LI Gen, LIU Cheng-bin. Influencing mechanisms of inter-layer adhesion behavior on buckle propagation of sandwich pipes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 819-827.
[14] PENG Zhao, LAN Ji-wu, ZHAN Liang-tong, HE Hai-jie, FU Yan-ming, ZHENG Xue-juan. Application of loading berm in landfill partial slip control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 710-718.
[15] WANG Dong-xing, WANG Hong-wei, XIAO Jie. Experimental study on water stability property of dredged sludge solidified with reactive MgO[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 719-726.