Please wait a minute...
J4  2010, Vol. 44 Issue (1): 8-13    DOI: 10.3785/j.issn.1008-973X.2010.01.002
    
Design and implementation of underwater junction box prototype system for deep seafloor observatory network
LU Han-liang, LI De-jun, YANG Can-jun, JIN Bo, CHEN Yan-hu, CHEN Ying
(State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A suit of junction box prototype system which is based on underwater junction technology was designed to implement long-term continuous observation for deep seafloor observatory network. Based on analysis of the junction box framework, a waterproof pressure-resistant multi-housing was chosen as mechanical and electronic integration encapsulation structure of the underwater junction box, and the mechanical and thermal structures were designed for the pressure-resistant housings. On the basis of experiments, a new method by arraying MOSFET parts in series on the input side and in parallel on the output side was proposed to transform 2 kV high-voltage DC to 400 V middle-voltage DC, consequently the deep-sea long-distance high-voltage DC power transmission was implemented successfully. Considering the real-time request of the deep-sea observation equipments, the optic Ethernet technology based on TCP/IP and the application layer user-defined protocol technology were chosen to implement communication control. The results of pressure experiments showed that the junction box prototype system can work normally at 40 MPa. As results, the junction box prototype system is proved to be reasonable and practical, which is expected to be used for the implementation of long-term continuous observation for deep seafloor observatory network.



Published: 26 February 2010
CLC:  TH 137  
Cite this article:

LEI Han-Liang, LI De-Jun, YANG Can-Jun, et al. Design and implementation of underwater junction box prototype system for deep seafloor observatory network. J4, 2010, 44(1): 8-13.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.01.002     OR     http://www.zjujournals.com/eng/Y2010/V44/I1/8


深海海底观测网络水下接驳盒原型系统设计与实现

为实现深海海底观测网络的长期连续观测,设计一套基于水下接驳技术的接驳盒原型系统.通过分析接驳盒体系结构,采用多个耐压密封腔体作为水下接驳盒的机电集成封装结构,完成耐压腔体机械结构和散热结构设计.在实验的基础上,利用MOSFET器件以输入串联和输出并联相结合的方式,把2 kV高压直流电转换为400 V中压直流电,实现深海远距离高压直流电能传输.针对深海观测仪器设备通信的实时性要求,采用基于TCP/IP的光以太网技术和应用层自定义协议技术来实现通信控制.实验验证了在40 MPa下,水下接驳盒原型系统能够正常工作.该水下接驳盒原型系统合理且实用,为实现深海海底观测网络的长期连续观测提供了技术支撑.

[1] WATERWORTH G. Connecting long-term seafloor observatories to the shore [J]. Sea Technology, 2004, 45(9): 10-13.
[2] KAWAGUCHI K, HIRATA K, NISHIDA T, et al. A new approach for mobile and expandable real-time deep seafloor observation — adaptable observation system [J]. IEEE Journal of Oceanic Engineering, 2002, 27(2): 182-192.
[3] DUENNEBIER F K, HARRIS D W, JOLLY J, et al. The Hawaii-2 observatory seismic system [J]. IEEE Journal of Oceanic Engineering, 2002, 27(2): 212-217.
[4] PERSON R, AOUSTIN Y, BLANDIN J, et al. From bottom landers to observatory networks [J]. Annals of Geophysics, 2006, 49(2/3): 581-593.
[5] CHAVE A D, WATERWORTH G, MAFFEI A R, et al. Cabled ocean observatory systems [J]. Marine Technology Society Journal, 2004, 38(2): 30-43.
[6] 汪品先. 关于建设海底观测平台的建议[J]. 学会, 2005(5): 52-53.
WANG Pin-xian. A proposal of seafloor observatory platform development [J]. Academy, 2005(5): 52-53.
[7] 陈鹰,杨灿军,陶春辉,等. 海底观测系统[M]. 北京:海洋出版社, 2006: 65-69.
[8] DELANEY J, HEATH G R, CHAVE A, et al. NEPTUNE: real-time ocean and earth science at the scale of a tectonic plate [C]∥ Oceans 2001 MTS/IEEE—An Ocean Odyssey. Honolulu: IEEE, 2001, 3: 1366-1373.
[9] 罗续业,李彦. 海王星海底长期观测系统的技术分析[J]. 海洋技术, 2006, 25(3): 15-18.
LUO Xu-ye, LI Yan. A technology analysis of NEPTUNE [J]. Ocean Technology, 2006, 25(3): 15-18.

[1] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. J4, 2014, 48(3): 451-455.
[2] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump[J]. J4, 2014, 48(2): 200-205.
[3] MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose[J]. J4, 2014, 48(1): 21-28.
[4] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. J4, 2013, 47(8): 1444-1449.
[5] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. J4, 2013, 47(7): 1287-1292.
[6] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. J4, 2013, 47(5): 755-760.
[7] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation [J]. J4, 2013, 47(5): 741-749.
[8] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
[J]. J4, 2013, 47(3): 522-527.
[9] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. J4, 2013, 47(2): 193-200.
[10] ZHANG Yan-ting, QU Ying-feng, LIU Zhen-dong, MA Jiang-tao. Design of swing device for crown-block heave compensation system[J]. J4, 2012, 46(12): 2268-2273.
[11] FANG Jin-hui, WEI Jian-hua, KONG Xiao-wu. Synchronous control strategy for paralleled servo valves[J]. J4, 2012, 46(6): 1054-1059.
[12] DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve
[J]. J4, 2012, 46(6): 1034-1040.
[13] MAN Jun , DING Fan , LI Qi-peng , DA Jing , SHAO Sen-yin. Study of high-pressure high-speed on-off solenoid using
permanent magnet shield
[J]. J4, 2012, 46(2): 309-314.
[14] GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator[J]. J4, 2012, 46(1): 142-149.
[15] HUANG Jia-hai,WEI Jian-hua, QIU Min-xiu. Investigation on the transmission characteristics of hydroviscous drive[J]. J4, 2011, 45(11): 1927-1933.