| 计算机技术 |
|
|
|
|
| 非对称结构的高光谱与激光雷达图像分类模型 |
李明婉( ),房胜*( ),李哲 |
| 山东科技大学 计算机科学与工程学院,山东 青岛 266590 |
|
| Asymmetric structure based hyperspectral and LiDAR image classification model |
Mingwan LI( ),Sheng FANG*( ),Zhe LI |
| College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
| 1 |
HONG D, GAO L, YOKOYA N, et al More diverse means better: multimodal deep learning meets remote-sensing imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (5): 4340- 4354
doi: 10.1109/TGRS.2020.3016820
|
| 2 |
HUANG J, ZHANG Y, YANG F, et al Attention-guided fusion and classification for hyperspectral and LiDAR data[J]. Remote Sensing, 2024, 16 (1): 94
|
| 3 |
LI H, GHAMISI P, SOERGEL U, et al Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks[J]. Remote Sensing, 2018, 10 (10): 1649
doi: 10.3390/rs10101649
|
| 4 |
HONG D, GAO L, HANG R, et al Deep encoder-decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 5500205
|
| 5 |
FENG Y, ZHU J, SONG R, et al S2EFT: spectral-spatial-elevation fusion transformer for hyperspectral image and LiDAR classification[J]. Knowledge-Based Systems, 2024, 283: 111190
doi: 10.1016/j.knosys.2023.111190
|
| 6 |
ZHANG Y, XU S, HONG D, et al Multimodal transformer network for hyperspectral and LiDAR classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5514317
|
| 7 |
ZHAO G, YE Q, SUN L, et al Joint classification of hyperspectral and LiDAR data using a hierarchical CNN and transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 5500716
|
| 8 |
XUE Z, TAN X, YU X, et al Deep hierarchical vision transformer for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Image Processing, 2022, 31: 3095- 3110
doi: 10.1109/TIP.2022.3162964
|
| 9 |
NI K, WANG D, ZHENG Z, et al MHST: multiscale head selection transformer for hyperspectral and LiDAR classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5470- 5483
doi: 10.1109/JSTARS.2024.3366614
|
| 11 |
SONG R, FENG Y, CHENG W, et al BS2T: bottleneck spatial–spectral transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5532117
|
| 12 |
JIA S, WANG Y, JIANG S, et al A center-masked transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5510416
|
| 13 |
ZHAO S, CHEN H, ZHANG X, et al RS-mamba for large remote sensing image dense prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5633314
|
| 14 |
FANG S, LI K, LI Z S2ENet: spatial–spectral cross-modal enhancement network for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 6504205
|
| 15 |
GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces [EB/OL]. (2024-05-31)[2025-7-11]. https://arxiv.org/abs/2312.00752.
|
| 16 |
WANG X, ZHU J, FENG Y, et al MS2CANet: multiscale spatial–spectral cross-modal attention network for hyperspectral image and LiDAR classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5501505
|
| 17 |
GADER P, ZARE A, CLOSE R, et al. MUUFL Gulfport hyperspectral and LiDAR airborne data set: REP-2013-570 [R]. Gainesville, FL: University of Florida, 2013.
|
| 18 |
DU X, ZARE A. Technical report: scene label ground truth map for MUUFL gulfport data set [EB/OL]. (2017-04-17)[2025-07-15]. http://ufdc.ufl.edu/IR00009711/00001.
|
| 19 |
ROY S K, KRISHNA G, DUBEY S R, et al HybridSN: exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (2): 277- 281
doi: 10.1109/LGRS.2019.2918719
|
| 20 |
HONG D, HAN Z, YAO J, et al SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5518615
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|