| 机械工程 |
|
|
|
|
| 多源数据混合驱动的铣削刀具磨损状态动态评价方法 |
毛建威( ),周迪,庄笑,孙维方*( ) |
| 温州大学 机电工程学院,浙江 温州,325035 |
|
| Dynamic evaluation method for milling tool wear state using multi-source data hybrid drive |
Jianwei MAO( ),Di ZHOU,Xiao ZHUANG,Weifang SUN*( ) |
| College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China |
引用本文:
毛建威,周迪,庄笑,孙维方. 多源数据混合驱动的铣削刀具磨损状态动态评价方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2056-2066.
Jianwei MAO,Di ZHOU,Xiao ZHUANG,Weifang SUN. Dynamic evaluation method for milling tool wear state using multi-source data hybrid drive. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2056-2066.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.006
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2056
|
| 1 |
王秋莲, 欧桂雄, 徐雪娇, 等 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35 (6): 1052- 1063 WANG Qiulian, OU Guixiong, XU Xuejiao, et al Research on CNC milling machine cutting power prediction model considering tool wear based on VMD-SSA-LSTM[J]. China Mechanical Engineering, 2024, 35 (6): 1052- 1063
|
| 2 |
PIMENOV D Y, BUSTILLO A, WOJCIECHOWSKI S, et al Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review[J]. Journal of Intelligent Manufacturing, 2023, 34 (5): 2079- 2121
doi: 10.1007/s10845-022-01923-2
|
| 3 |
刘献礼, 秦怡源, 岳彩旭, 等 递归特征消除与极端随机树在铣刀磨损监测中的研究[J]. 机械科学与技术, 2023, 42 (6): 821- 828 LIU Xianli, QIN Yiyuan, YUE Caixu, et al Application research on recursive feature elimination and extra trees in milling cutter wear monitoring[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (6): 821- 828
|
| 4 |
程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904 CHENG Xun, YU Jianbo Monitoring method for machining tool wear based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 896- 904
|
| 5 |
LI S, LING Z, ZHU K Image super resolution by double dictionary learning and its application to tool wear monitoring in micro milling[J]. Mechanical Systems and Signal Processing, 2024, 206: 110917
doi: 10.1016/j.ymssp.2023.110917
|
| 6 |
YU J, CHENG X, LU L, et al A machine vision method for measurement of machining tool wear[J]. Measurement, 2021, 182: 109683
doi: 10.1016/j.measurement.2021.109683
|
| 7 |
ZHU K, GUO H, LI S, et al Online tool wear monitoring by super-resolution based machine vision[J]. Computers in Industry, 2023, 144: 103782
doi: 10.1016/j.compind.2022.103782
|
| 8 |
LI W, FU H, HAN Z, et al Intelligent tool wear prediction based on Informer encoder and stacked bidirectional gated recurrent unit[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102368
doi: 10.1016/j.rcim.2022.102368
|
| 9 |
HU K, JIN J, ZHENG F, et al Overview of behavior recognition based on deep learning[J]. Artificial Intelligence Review, 2023, 56 (3): 1833- 1865
doi: 10.1007/s10462-022-10210-8
|
| 10 |
刘会永, 张松, 李剑峰, 等 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33 (16): 1940- 1947 LIU Huiyong, ZHANG Song, LI Jianfeng, et al Tool wear detection based on improved CNN-BiLSTM model[J]. China Mechanical Engineering, 2022, 33 (16): 1940- 1947
|
| 11 |
WANG M, YANG L, ZHAO Z, et al Intelligent prediction of wear location and mechanism using image identification based on improved Faster R-CNN model[J]. Tribology International, 2022, 169: 107466
doi: 10.1016/j.triboint.2022.107466
|
| 12 |
ZHANG X, YU T, XU P, et al In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling[J]. Mechanical Systems and Signal Processing, 2022, 164: 108233
doi: 10.1016/j.ymssp.2021.108233
|
| 13 |
史丽晨, 史炜椿, 王海涛, 等 基于DRSN-BiLSTM模型的刀具磨损预测方法研究[J]. 机械工程学报, 2024, 60 (24): 66- 74 SHI Lichen, SHI Weichun, WANG Haitao, et al Tool wear prediction based on DRSN-BiLSTM model[J]. Journal of Mechanical Engineering, 2024, 60 (24): 66- 74
|
| 14 |
滕瑞, 黄海松, 杨凯, 等 基于图像编码技术和卷积神经网络的刀具磨损值在线监测方法[J]. 计算机集成制造系统, 2022, 28 (4): 1042- 1051 TENG Rui, HUANG Haisong, YANG Kai, et al On-line monitoring method for tool wear based on image coding technology and convolutional neural network[J]. Computer Integrated Manufacturing Systems, 2022, 28 (4): 1042- 1051
|
| 15 |
朱锟鹏, 黄称意, 李俊 刀具磨损状态的多步向前智能预测[J]. 计算机集成制造系统, 2024, 30 (9): 3038- 3049 ZHU Kunpeng, HUANG Chengyi, LI Jun Multi-step forward intelligent prediction of tool wear condition[J]. Computer Integrated Manufacturing Systems, 2024, 30 (9): 3038- 3049
|
| 16 |
李恒帅, 刘献礼, 岳彩旭, 等 刀具磨损自动识别及检测系统[J]. 计算机应用, 2021, 41 (Suppl.1): 259- 263 LI Hengshuai, LIU Xianli, YUE Caixu, et al Automatic recognition and detection system for cutter wear[J]. Journal of Computer Applications, 2021, 41 (Suppl.1): 259- 263
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|