Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2056-2066    DOI: 10.3785/j.issn.1008-973X.2025.10.006
机械工程     
多源数据混合驱动的铣削刀具磨损状态动态评价方法
毛建威(),周迪,庄笑,孙维方*()
温州大学 机电工程学院,浙江 温州,325035
Dynamic evaluation method for milling tool wear state using multi-source data hybrid drive
Jianwei MAO(),Di ZHOU,Xiao ZHUANG,Weifang SUN*()
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
 全文: PDF(4007 KB)   HTML
摘要:

动态环境变化会影响铣削过程中加工刀具服役状态的评估,为此提出融合直接与间接测量的刀具磨损评价方法. 将周期性刀具端部图像与实时声音数据融合,结合直接测量的高精度与间接测量的连续性特点,实现所提方法对加工过程中刀具磨损状态的鲁棒评价. 为了提升评价效果,构建多尺度网络模型,通过在不同尺度上捕获磨损特征并深度融合多源信息来增强模型的特征提取能力. 不同加工参数下的铣削实验结果表明,较之对比模型(SPPNet、ASPP、U-Net),所提方法能够有效追踪关键特征变化且评估准确性高. 在4组铣削实验中,所提方法的平均绝对误差均值为0.05124、均方根误差均值为0.06273、决定系数均值为0.94508;该方法的刀具服役状态评价误差低,动态追踪能力强.

关键词: 刀具图像声音信号刀具磨损动态评价铣削    
Abstract:

In order to address the problem that dynamic environmental changes affect the evaluation of cutting tools’ service state during milling, a tool wear evaluation method integrating direct and indirect measurements was proposed. Periodic tool end images were fused with real-time sound data, and the high precision of direct measurement and continuity of indirect measurement were combined to realize robust evaluation of the tool wear state during machining. To improve the evaluation effect, a multi-scale network model was constructed. Wear features at different scales were captured, and multi-source information was deeply fused to enhance the model’s feature extraction capability. Results of milling experiments under different machining parameters show that the proposed method can effectively track feature changes in key features and achieves higher accuracy than comparative models (SPPNet, ASPP, U-Net). In four groups of milling experiments, the proposed method exhibited mean values of 0.05124 for mean absolute error, 0.06273 for root mean square error, and 0.94508 for coefficient of determination. The method showed low evaluation error for the tool service condition and strong dynamic tracking capability.

Key words: tool image    acoustic signal    tool wear    dynamic evaluation    milling
收稿日期: 2024-09-28 出版日期: 2025-10-27
CLC:  TH 165  
基金资助: 国家自然科学基金资助项目(52205122).
通讯作者: 孙维方     E-mail: 1171367413@qq.com;swf@wzu.edu.cn
作者简介: 毛建威(1998—),男,硕士生,从事加工过程状态监测研究. orcid.org/0009-0000-5792-0906. E-mail:1171367413@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
毛建威
周迪
庄笑
孙维方

引用本文:

毛建威,周迪,庄笑,孙维方. 多源数据混合驱动的铣削刀具磨损状态动态评价方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2056-2066.

Jianwei MAO,Di ZHOU,Xiao ZHUANG,Weifang SUN. Dynamic evaluation method for milling tool wear state using multi-source data hybrid drive. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2056-2066.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.006        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2056

图 1  多尺度深度融合模型的网络结构
图 2  感受野块的网络结构
图 3  卷积块注意力模块
图 4  改进感受野-卷积块注意力模块的网络结构
图 5  立式加工中心
图 6  实验测量仪器
图 7  铣削路径示意图
组别n/(r·min?1ap/mmvf/(mm·min?1nm
123000.650010
224000.550010
325000.540011
423000.640010
表 1  铣削参数设置
图 8  刀具磨损测量示意图
图 9  所提刀具磨损状态评估模型在4组铣削实验中的测试结果
图 10  刀具在不同信噪比条件下的声信号图像
图 11  声信号的马尔可夫转移场转移图像
图 12  所提刀具磨损状态评估模型在4组铣削实验中的测试结果(不同信噪比条件下)
图 13  所提刀具磨损状态评估模型在4组铣削实验中的测试结果(不同输入方式条件下)
输入实验1组实验2组实验3组实验4组
MAERMSER2MAERMSER2MAERMSER2MAERMSER2
信号0.146550.210050.756300.100640.116710.752430.090940.125850.678650.142170.157230.68958
图像0.094620.123960.915110.071300.077820.889920.058900.088090.842530.080070.092690.89210
图像+信号0.140990.184760.811440.083810.096810.829650.072430.099330.799800.073000.102920.86697
图像+MTF0.096740.109270.934040.051860.067760.916540.052920.078530.874860.063340.072240.93446
表 2  所提刀具磨损状态评估模型在4组铣削实验中的评估指标(不同输入方式条件下)
图 14  不同评估模型在4组铣削实验中的测试结果
模型实验1组实验2组实验3组实验4组
MAERMSER2MAERMSER2MAERMSER2MAERMSER2
SPPNet0.116930.145990.882270.079720.095120.835530.067350.099270.800060.082180.119570.82046
ASPP0.127310.152740.871140.091930.112140.771420.058520.073910.889160.079610.107080.85602
U-Net0.114950.141090.890030.074730.090440.851320.069040.087870.843340.065590.098340.87856
表 3  不同评估模型在4组铣削实验中的评估指标
图 15  声信号图像和3种信号转换方式转换的图像
图 16  不同信号转换方式组成模型在4种铣削实验中的测试结果
模型实验1组实验2组实验3组实验4组
MAERMSER2MAERMSER2MAERMSER2MAERMSER2
图像+CWT0.100290.128220.909180.086600.098410.823980.058550.096690.810310.060680.085950.90722
图像+RP0.082320.106280.937600.070470.082180.877240.051650.083680.857910.052190.071420.93594
图像+GAF0.099770.120970.919160.085550.100810.815290.076440.103410.783050.062790.094660.88748
表 4  不同信号转换方式组成模型在4种铣削实验中的评估指标
1 王秋莲, 欧桂雄, 徐雪娇, 等 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35 (6): 1052- 1063
WANG Qiulian, OU Guixiong, XU Xuejiao, et al Research on CNC milling machine cutting power prediction model considering tool wear based on VMD-SSA-LSTM[J]. China Mechanical Engineering, 2024, 35 (6): 1052- 1063
2 PIMENOV D Y, BUSTILLO A, WOJCIECHOWSKI S, et al Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review[J]. Journal of Intelligent Manufacturing, 2023, 34 (5): 2079- 2121
doi: 10.1007/s10845-022-01923-2
3 刘献礼, 秦怡源, 岳彩旭, 等 递归特征消除与极端随机树在铣刀磨损监测中的研究[J]. 机械科学与技术, 2023, 42 (6): 821- 828
LIU Xianli, QIN Yiyuan, YUE Caixu, et al Application research on recursive feature elimination and extra trees in milling cutter wear monitoring[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (6): 821- 828
4 程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904
CHENG Xun, YU Jianbo Monitoring method for machining tool wear based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 896- 904
5 LI S, LING Z, ZHU K Image super resolution by double dictionary learning and its application to tool wear monitoring in micro milling[J]. Mechanical Systems and Signal Processing, 2024, 206: 110917
doi: 10.1016/j.ymssp.2023.110917
6 YU J, CHENG X, LU L, et al A machine vision method for measurement of machining tool wear[J]. Measurement, 2021, 182: 109683
doi: 10.1016/j.measurement.2021.109683
7 ZHU K, GUO H, LI S, et al Online tool wear monitoring by super-resolution based machine vision[J]. Computers in Industry, 2023, 144: 103782
doi: 10.1016/j.compind.2022.103782
8 LI W, FU H, HAN Z, et al Intelligent tool wear prediction based on Informer encoder and stacked bidirectional gated recurrent unit[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102368
doi: 10.1016/j.rcim.2022.102368
9 HU K, JIN J, ZHENG F, et al Overview of behavior recognition based on deep learning[J]. Artificial Intelligence Review, 2023, 56 (3): 1833- 1865
doi: 10.1007/s10462-022-10210-8
10 刘会永, 张松, 李剑峰, 等 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33 (16): 1940- 1947
LIU Huiyong, ZHANG Song, LI Jianfeng, et al Tool wear detection based on improved CNN-BiLSTM model[J]. China Mechanical Engineering, 2022, 33 (16): 1940- 1947
11 WANG M, YANG L, ZHAO Z, et al Intelligent prediction of wear location and mechanism using image identification based on improved Faster R-CNN model[J]. Tribology International, 2022, 169: 107466
doi: 10.1016/j.triboint.2022.107466
12 ZHANG X, YU T, XU P, et al In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling[J]. Mechanical Systems and Signal Processing, 2022, 164: 108233
doi: 10.1016/j.ymssp.2021.108233
13 史丽晨, 史炜椿, 王海涛, 等 基于DRSN-BiLSTM模型的刀具磨损预测方法研究[J]. 机械工程学报, 2024, 60 (24): 66- 74
SHI Lichen, SHI Weichun, WANG Haitao, et al Tool wear prediction based on DRSN-BiLSTM model[J]. Journal of Mechanical Engineering, 2024, 60 (24): 66- 74
14 滕瑞, 黄海松, 杨凯, 等 基于图像编码技术和卷积神经网络的刀具磨损值在线监测方法[J]. 计算机集成制造系统, 2022, 28 (4): 1042- 1051
TENG Rui, HUANG Haisong, YANG Kai, et al On-line monitoring method for tool wear based on image coding technology and convolutional neural network[J]. Computer Integrated Manufacturing Systems, 2022, 28 (4): 1042- 1051
15 朱锟鹏, 黄称意, 李俊 刀具磨损状态的多步向前智能预测[J]. 计算机集成制造系统, 2024, 30 (9): 3038- 3049
ZHU Kunpeng, HUANG Chengyi, LI Jun Multi-step forward intelligent prediction of tool wear condition[J]. Computer Integrated Manufacturing Systems, 2024, 30 (9): 3038- 3049
16 李恒帅, 刘献礼, 岳彩旭, 等 刀具磨损自动识别及检测系统[J]. 计算机应用, 2021, 41 (Suppl.1): 259- 263
LI Hengshuai, LIU Xianli, YUE Caixu, et al Automatic recognition and detection system for cutter wear[J]. Journal of Computer Applications, 2021, 41 (Suppl.1): 259- 263
[1] 刘超,黄尊鹏,黄绍服. 考虑材料形变的旋风铣削螺纹工件表面粗糙度建模[J]. 浙江大学学报(工学版), 2024, 58(4): 761-771.
[2] 吕涛,于爱兵,许雪峰,马敏海,赵丛林. 磁场辅助纳米流体气雾渗透沉积特性及其加工性能[J]. 浙江大学学报(工学版), 2024, 58(11): 2320-2329.
[3] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[4] 程训,余建波. 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报(工学版), 2021, 55(5): 896-904.
[5] 汪海晋,尹宗宇,柯臻铮,郭英杰,董辉跃. 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报(工学版), 2020, 54(5): 931-939.
[6] 董辉跃,朱灵盛, 章明, 李少波,罗水均. 飞机蒙皮切边的螺旋铣削方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2033-2039.
[7] 吴红兵 柯映林 刘刚 董辉跃. 航空框类整体结构件铣削加工变形研究[J]. J4, 2009, 43(3): 546-550.
[8] 袁平 柯映林 董辉跃. 基于次摆线轨迹的铝合金高速铣削有限元仿真[J]. J4, 2009, 43(3): 570-577.
[9] 郝赫 冯毅雄 谭建荣. 基于扩展物元模型的客户动态评价[J]. J4, 2009, 43(1): 57-62.
[10] 毕运波 柯映林 成群林 董辉跃. 基于物理学的铣削过程仿真关键技术[J]. J4, 2007, 41(4): 541-546.
[11] 金成柱 刘刚 柯映林. 基于铣削力模型的NOMEX蜂窝固持工艺优化术[J]. J4, 2007, 41(4): 547-550.
[12] 董辉跃 柯映林 成群林. 铝合金三维铣削加工的有限元模拟与分析[J]. J4, 2006, 40(5): 759-762.
[13] 黄志刚 柯映林 董辉跃. 框类整体结构件铣削加工顺序的有限元模型[J]. J4, 2005, 39(3): 368-372.