Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2338-2346    DOI: 10.3785/j.issn.1008-973X.2024.11.015
机械与环境工程     
垃圾焚烧发电项目碳排放计算对比
黄静颖(),焦学军,龙吉生*()
上海康恒环境股份有限公司,上海 201703
Comparison of carbon emission calculation for MSW incineration power generation project
Jingying HUANG(),Xuejun JIAO,Jisheng LONG*()
Shanghai SUS Environment Limited Company, Shanghai 201703, China
 全文: PDF(1014 KB)   HTML
摘要:

为了提高生活垃圾焚烧碳排放计算的准确性,提出中国核证自愿减排量(CCER)方法学和平衡法结合的可能性. 采用2种方法学分别计算5个不同地区的垃圾焚烧发电项目计入期内的碳排放,分析排放影响因素. 结果表明,CCER方法学中的每吨垃圾基准线排放质量为0.26~0.40 t,项目排放质量为0.34~0.79 t,项目减排质量为?0.44~?0.05 t. 平衡法仅对每吨垃圾项目排放质量进行计算,为0.24~0.50 t(不含生物源碳排放). 对2种方法学项目排放量中的每吨垃圾焚烧产生的CO2(化石源碳)排放量进行比较,利用CCER方法学计算得到的每吨垃圾排放质量为0.32~0.76 t;平衡法计算的范围为0.22~0.49 t,较接近文献值. 垃圾样品的时空波动特性使得CCER方法学的计算结果具有较大误差;平衡法无须进行垃圾采样,是简便快捷、准确性高的碳排放实时在线计算方法学. 平衡法可以替代CCER方法学中焚烧产生的CO2(化石源碳)排放计算.

关键词: 垃圾焚烧碳排放中国核证自愿减排量(CCER)方法学平衡法化石源碳生物源碳    
Abstract:

The possibility of combining Chinese certified emission reduction (CCER) method and balance method was proposed in order to improve the accuracy of carbon emission calculation for municipal solid waste (MSW) incineration. The two methods were used to calculate carbon emissions of five MSW incineration power generation projects in different regions during the crediting period, and the factors affecting carbon emissions were analyzed. Results showed that baseline emissions, project emissions and project emission reductions per ton waste were 0.26~0.40 t, 0.34~0.79 t and ?0.44~?0.05 t respectively in CCER method calculation. Only project emissions were calculated in balance method, ranging from 0.24 t to 0.50 t per ton waste (excluding biogenic source carbon emissions). The emission range of CCER method and balance method were 0.32~0.76 t and 0.22~0.49 t per ton waste respectively by comparing project emissions of CO2 (fossil source carbon emissions) from combustion of the two methods. The result of balance method was relatively close to the literature values. Results showed that a quite great error would happen in CCER method calculation due to the spatial and temporal fluctuations of MSW samples. Balance method was a convenient, fast and accurate method for real-time carbon emissions calculation, while MSW sampling was unnecessary during calculation. Balance method could replace the calculation of project emissions of CO2 (fossil source carbon emissions) from combustion in CCER method.

Key words: waste incineration    carbon emission    Chinese certified emission reduction (CCER) method    balance method    fossil source carbon    biogenic source carbon
收稿日期: 2023-09-12 出版日期: 2024-10-23
CLC:  X 799  
基金资助: 国家重点研发计划资助项目(2022YFE0117300).
通讯作者: 龙吉生     E-mail: huangjy1@shjec.cn;long@shjec.cn
作者简介: 黄静颖(1996—),女,硕士,从事固废处置碳排放的研究. orcid.org/0000-0002-8355-3596. E-mail:huangjy1@shjec.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄静颖
焦学军
龙吉生

引用本文:

黄静颖,焦学军,龙吉生. 垃圾焚烧发电项目碳排放计算对比[J]. 浙江大学学报(工学版), 2024, 58(11): 2338-2346.

Jingying HUANG,Xuejun JIAO,Jisheng LONG. Comparison of carbon emission calculation for MSW incineration power generation project. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2338-2346.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2338

项目
信息
焚烧炉
类型
气候类型mc/
(104 t)
Ep/
(104 kW?h)
mw/
(104 t)
A炉排炉MAT>20 ℃
MAP/PET>1
91.0433 97415.67
B炉排炉MAT≤20 ℃
MAP/PET>1
173.0066 54443.19
C炉排炉MAT≤20 ℃
MAP/PET>1
175.8455 71640.13
D炉排炉MAT≤20 ℃
MAP/PET<1
127.9442 17519.53
E炉排炉MAT≤20 ℃
MAP/PET<1
172.7347 72528.85
表 1  垃圾焚烧发电项目A~E的项目信息
图 1  2020—2021年垃圾焚烧发电项目A~ E的垃圾组分(湿基)
图 2  2020—2021年垃圾焚烧发电项目A~E的垃圾组分(干基)
垃圾类型w(C)w(H)w(S)w(N)w(O)
生物源碳类型垃圾468±6.966±1.13.3±0.712±1.6446±8.3
化石源碳类型垃圾769±20109±7.23±1.113±5.488±22
表 2  生物源碳类型垃圾和化石源碳类型垃圾的元素质量分数(干燥无灰基)
图 3  2020—2021年垃圾焚烧发电项目A~ E的每吨垃圾基准线排放量(CCER方法学)
图 4  2020—2021年垃圾焚烧发电项目A~E的每吨垃圾项目排放量(CCER方法学)
图 5  2020—2021年垃圾焚烧发电项目A~E的每吨垃圾项目减排量(CCER方法学)
图 6  2020—2021年垃圾焚烧发电项目A~E的垃圾组分(平衡法,干基)
图 7  2020—2021年垃圾焚烧发电项目A~E的每吨垃圾项目排放量(平衡法)
图 8  2020—2021年垃圾焚烧发电项目A~E每吨垃圾燃烧产生的化石源碳排放质量
1 SONG Q, WANG Z, LI J, et al Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau[J]. Renewable and Sustainable Energy Reviews, 2018, 81 (1): 2450- 2459
2 严薇, 刘舒乐, 吴正方, 等 废弃物焚烧处理温室气体排放情景模拟与预测[J]. 环境科学, 2022, 43 (12): 5470- 5477
YAN Wei, LIU Shule, WU Zhengfang, et al Scenario simulation and prediction of greenhouse gas emissions from incineration of solid waste[J]. Environmental Science, 2022, 43 (12): 5470- 5477
3 陈清, 汪屈峰, 李艳, 等 华南某垃圾焚烧厂焚烧飞灰理化特性及重金属形态研究[J]. 环境卫生工程, 2019, 27 (4): 13- 18
CHEN Qing, WANG Qufeng, LI Yan, et al Research on physico-chemical characteristics and heavy metal fraction in fly ash from a MSW incineration plant in South China[J]. Environmental Sanitation Engineering, 2019, 27 (4): 13- 18
4 康治金, 刘志英, 徐学骁, 等 生活垃圾焚烧飞灰制备植草砖的研究[J]. 环境污染与防治, 2018, 40 (9): 1019- 1022
KANG Zhijin, LIU Zhiying, XU Xuexiao, et al Research on preparation of grass-planting tiles with MSWI fly ash[J]. Environmental Pollution and Control, 2018, 40 (9): 1019- 1022
5 尹文华, 龙世康, 何志远, 等 陈腐垃圾掺烧对垃圾焚烧烟气中污染物排放的影响[J]. 环境工程, 2022, 40 (7): 76- 80
YIN Wenhua, LONG Shikang, HE Zhiyuan, et al Impact of co-incineration of MSWI with aged refuse on gaseous pollutants emission[J]. Environmental Engineering, 2022, 40 (7): 76- 80
6 国家统计局. 年度数据[EB/OL]. (2023-06-01)[2023-07-20]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0B09&sj=2021.
7 BIAN R, ZHANG T, ZHAO F, et al Greenhouse gas emissions from waste sectors in China during 2006–2019: implications for carbon mitigation[J]. Process Safety and Environmental Protection, 2022, 161 (5): 488- 497
8 黄静颖, 张浩, 谭钦怀, 等 小型垃圾热解气化焚烧厂碳排放计算[J]. 环境卫生工程, 2021, 29 (4): 1- 6
HUANG Jingying, ZHANG Hao, TAN Qinhuai, et al Calculation of carbon emissions of a small scale waste pyrolysis-gasification incineration plant[J]. Environmental Sanitation Engineering, 2021, 29 (4): 1- 6
9 LIU Y, XING P, LIU J Environmental performance evaluation of different municipal solid waste management scenarios in China[J]. Resources, Conservation and Recycling, 2017, 125 (10): 98- 106
10 ALQATTAN N, ACHEAMPONG M, JAWARD F M, et al Reviewing the potential of waste-to-energy (WTE) technologies for sustainable development goal (SDG) numbers seven and eleven[J]. Renewable Energy Focus, 2018, 27 (12): 97- 110
11 ANSHASSI M, SACKLES H, TOWNSEND T G A review of LCA assumptions impacting whether landfilling or incineration results in less greenhouse gas emissions[J]. Resources Conservation and Recycling, 2021, 174 (11): 105810
12 中国人民共和国生态环境部. 碳监测评估试点工作方案[EB/OL]. (2021-09-12)[2023-07-20]. http://www.bjyddx.com.cn/dianchi/437.html.
13 MOHN J, SZIDAT S, FELLNER J, et al Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances[J]. Bioresource Technology, 2008, 99 (14): 6471- 6479
doi: 10.1016/j.biortech.2007.11.042
14 LEE J, KANG S, KIM S, et al Development of municipal solid waste classification in Korea based on fossil carbon fraction[J]. Journal of the Air and Waste Management Association, 2015, 65 (10): 1256- 1260
doi: 10.1080/10962247.2015.1079563
15 FELLNER J, CENCIC O, RECHBERGER H A new method to determine the ratio of electricity production from fossil and biogenic sources in waste-to-energy plants[J]. Environmental Science and Technology, 2007, 41 (7): 2579- 2586
doi: 10.1021/es0617587
16 FELLNER J, CENCIC O, ZELLINGER G, et al. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air [J]. Waste Management and Research, 2011, 29(10): 3-12.
FELLNER J, CENCIC O, ZELLINGER G, et al. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air [J]. Waste Management and Research , 2011, 29(10): 3-12.
17 SCHWARZBOCK T, RECHBERGER H, CENCIC O, et al Determining national greenhouse gas emissions from waste-to-energy using the balance method[J]. Waste Management, 2016, 49 (3): 263- 271
18 中华人民共和国国家发展和改革委员会. CM-072-V01 多选垃圾处理方式(第一版)[EB/OL]. (2013-03-11)[2023-07-20]. https://cdm.ccchina.org.cn/zylist.aspx?clmId=162.
19 何品晶, 陈淼, 杨娜, 等 我国生活垃圾焚烧发电过程中温室气体排放及影响因素: 以上海某城市生活垃圾焚烧发电厂为例[J]. 中国环境科学, 2011, 31 (3): 402- 407
HE Pinjing, CHEN Miao, YANG Na, et al GHG emissions from Chinese MSW incineration and their influencing factors: case study of one MSW incineration plant in Shanghai[J]. China Environmental Science, 2011, 31 (3): 402- 407
20 EGGLESTON H. S, BUENDIA L, MIWA K, et al. IPCC guidelines for national greenhouse gas inventories 2006 [M]. Tokyo: IGES, 2007.
21 杨煜强, 王坤, 黄焕林, 等 基于生活垃圾分类的厨余垃圾采样方法研究[J]. 环境科学学报, 2015, 35 (2): 570- 575
YANG Yuqiang, WANG Kun, HUANG Huanlin, et al Kitchen waste sampling method based on domestic waste classification[J]. Acta Scientiae Circumstantiae, 2015, 35 (2): 570- 575
22 中华人民共和国住房与城乡建设部. 2021年中国城市建设状况公报[EB/OL]. (2022-09-28)[2023-07-20]. https://www.mohurd.gov.cn/ess/?ty=a&query=2021%E5%B9%B4%E4%B8%AD%E5%9B%BD%E5%9F%8E%E5%B8%82%E5%BB%BA%E8%AE%BE%E7%8A%B6%E5%86%B5%E5%85%AC%E6%8A%A5&ukl=&uka=&ukf=2021%E5%B9%B4%E4%B8%AD%E5%9B%BD%E5%9F%8E%E5%B8%82%E5%BB%BA%E8%AE%BE%E7%8A%B6%E5%86%B5%E5%85%AC%E6%8A%A5&ukt=&sl=&ts=&te=&upg=1,2022.
23 刘志强, 潘荔, 赵毅, 等 “十四五”时期我国火电行业节能潜力分析与建议[J]. 中国能源, 2021, 43 (4): 12- 18
LIU Zhiqiang, PAN Li, ZHAO Yi, et al Analysis and suggestions of “14th Five-Year Plan” thermal power industry energy conservation potential in China[J]. Energy of China, 2021, 43 (4): 12- 18
24 成润婷, 张勇军, 李立浧, 等 面向高比例可再生能源消纳的电力市场建设及研究进展[J]. 中国工程科学, 2023, 25 (2): 89- 99
CHENG Runting, ZHANG Yongjun, LI Licheng, et al Construction and research progress of electricity market for high-proportion renewable energy consumption[J]. Strategic Study of CAE, 2023, 25 (2): 89- 99
25 李欢, 金宜英, 李洋洋 生活垃圾处理的碳排放和减排策略[J]. 中国环境科学, 2011, 31 (2): 259- 264
LI Huan, JIN Yiying, LI Yangyang Carbon emission and its reduction strategies during municipal solid waste treatment[J]. China Environmental Science, 2011, 31 (2): 259- 264
26 LIU Y, SUN W, LIU J Greenhouse gas emissions from different municipal solid waste management scenarios in China: based on carbon and energy flow analysis[J]. Waste Management, 2017, 68 (10): 653- 661
27 OBERMOSER M, FELLNER J, RECHBERGER H Determination of reliable CO2 emission factors for waste-to-energy plants[J]. Waste Management and Research, 2009, 27 (9): 907- 913
doi: 10.1177/0734242X09349763
28 ZIYANG L, LUOCHUN W, NANWEN Z, et al Martial recycling from renewable landfill and associated risks: A review[J]. Chemosphere, 2015, 131 (7): 91- 103
29 赵磊, 陈德珍, 刘光宇, 等 垃圾热化学转化利用过程中碳排放的两种计算方法[J]. 环境科学学报, 2010, 30 (8): 1634- 1641
ZHAO Lei, CHEN Dezhen, LIU Guangyu, et al Two calculation methods for greenhouse gas emissions from municipal solid waste thermo-chemical conversion and utilization processes[J]. Acta Scientiae Circumstantiae, 2010, 30 (8): 1634- 1641
[1] 刘军,李全功,廖义涵,王为术. 垃圾焚烧电厂焚烧炉-余热锅炉性能及NOx排放[J]. 浙江大学学报(工学版), 2020, 54(5): 1014-1021.
[2] 吴雪松, 程乐鸣, 闫珂, 张维国. 工业级多孔介质低氮燃烧器试验研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2136-2141.
[3] 侯霞丽,李晓东,陈彤,陆胜勇,纪莎莎,任咏. 垃圾焚烧飞灰中主要元素的深度分布及形态[J]. 浙江大学学报(工学版), 2015, 49(5): 930-937.
[4] 张莉, 王俏丽, 李伟, 李素静. 电力行业温室气体排放情景分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2244-2251.
[5] 郑军,唐任仲. 面向砂型铸造的碳排放效率建模及评价方法[J]. 浙江大学学报(工学版), 2015, 49(1): 102-109.
[6] 叶秋红, 凌道盛. 基于矢量和法的边坡三维极限平衡稳定分析法[J]. J4, 2013, 47(6): 1097-1103.
[7] 徐长节,李碧青,蔡袁强. 自平衡法试桩的承载特性试验研究[J]. J4, 2012, 46(7): 1262-1268.
[8] 孙晓燕,董伟伟,王海龙,王捷. 考虑生命周期碳补偿成本的桥梁维修优化决策[J]. J4, 2012, 46(11): 2013-2019.
[9] 王勤, 严建华, 潘新潮, 池涌, 高飞. 利用热等离子体熔融垃圾焚烧飞灰[J]. J4, 2011, 45(1): 141-145.
[10] 刘劲松, 刘维屏, 潘荷芳, 冯元群, 巩宏平. 农村简易垃圾焚烧炉周边土壤二恶英分布研究[J]. J4, 2010, 44(3): 601-605.
[11] 陆胜勇 李晓东 章骥 池涌 严建华 陈彤 岑可法. 基于主成分分析的垃圾焚烧炉运行和污染物排放分析[J]. J4, 2006, 40(11): 2002-2006.