计算机与控制工程 |
|
|
|
|
卷积神经网络结合子域适应的低采样率肌电手势识别 |
周雕( ),熊馨,周建华*( ),宗静,张琪 |
昆明理工大学 信息工程与自动化学院,云南 昆明 650500 |
|
Convolutional neural network combined with subdomain adaptation for low sampling rate EMG-based gesture recognition |
Diao ZHOU( ),Xin XIONG,Jianhua ZHOU*( ),Jing ZONG,Qi ZHANG |
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China |
引用本文:
周雕,熊馨,周建华,宗静,张琪. 卷积神经网络结合子域适应的低采样率肌电手势识别[J]. 浙江大学学报(工学版), 2024, 58(10): 2011-2019.
Diao ZHOU,Xin XIONG,Jianhua ZHOU,Jing ZONG,Qi ZHANG. Convolutional neural network combined with subdomain adaptation for low sampling rate EMG-based gesture recognition. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2011-2019.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.004
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2011
|
1 |
LI K, ZHANG J, WANG L, et al A review of the key technologies for sEMG-based human-robot interaction systems[J]. Biomedical Signal Processing and Control, 2020, 62: 102074
doi: 10.1016/j.bspc.2020.102074
|
2 |
JIANG S, KANG P, SONG X, et al Emerging wearable interfaces and algorithms for hand gesture recognition: a survey[J]. IEEE Reviews in Biomedical Engineering, 2021, 15: 85- 102
|
3 |
NGUYEN-TRONG K, VU H N, TRUNG N N, et al Gesture recognition using wearable sensors with bi-long short-term memory convolutional neural networks[J]. IEEE Sensors Journal, 2021, 21 (13): 15065- 15079
doi: 10.1109/JSEN.2021.3074642
|
4 |
JIANG X, XU K, LIU X, et al Neuromuscular password-based user authentication[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (4): 2641- 2652
doi: 10.1109/TII.2020.3001612
|
5 |
CHEN X, GONG L, ZHENG L, et al. Soft exoskeleton glove for hand assistance based on human-machine interaction and machine learning [C]// 2020 IEEE International Conference on Human-Machine Systems . Rome: IEEE, 2020: 1−6.
|
6 |
Al-FAHAAM H, DAVIS S, NEFTI-MEZIANI S, et al Novel soft bending actuator-based power augmentation hand exoskeleton controlled by human intention[J]. Intelligent Service Robotics, 2018, 11 (3): 247- 268
doi: 10.1007/s11370-018-0250-4
|
7 |
PHINYOMARK A, KHUSHABA R N, SCHEME E Feature extraction and selection for myoelectric control based on wearable EMG sensors[J]. Sensors, 2018, 18 (5): 1615
doi: 10.3390/s18051615
|
8 |
CLANCT E A, MORIN E L, MERLETTI R Sampling, noise-reduction and amplitude estimation issues in surface electromyography[J]. Journal of Electromyography and Kinesiology, 2002, 12 (1): 1- 16
doi: 10.1016/S1050-6411(01)00033-5
|
9 |
IVES J C, WIGGLESWORTH J K Sampling rate effects on surface EMG timing and amplitude measures[J]. Clinical Biomechanics, 2003, 18 (6): 543- 552
doi: 10.1016/S0268-0033(03)00089-5
|
10 |
LI G, LI Y, YU L, et al Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses[J]. Annals of Biomedical Engineering, 2011, 39 (6): 1779- 1787
doi: 10.1007/s10439-011-0265-x
|
11 |
PHINYOMARK A, SCHEME E. A feature extraction issue for myoelectric control based on wearable EMG sensors [C]// 2018 IEEE Sensors Applications Symposium . Seoul: IEEE, 2018: 1−6.
|
12 |
CHEN H, ZHANG Y, LI G, et al Surface electromyography feature extraction via convolutional neural network[J]. International Journal of Machine Learning and Cybernetics, 2020, 11: 185- 196
doi: 10.1007/s13042-019-00966-x
|
13 |
ATZORI M, GIJSBERTS A, HEYNEN S, et al. Building the Ninapro database: a resource for the biorobotics community [C]// 2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics . Rome: IEEE, 2012: 1258−1265.
|
14 |
CAO L, ZHANG W, KAN X, et al A novel adaptive mutation PSO optimized SVM algorithm for sEMG-based gesture recognition[J]. Scientific Programming, 2021, 2021 (1): 9988823
|
15 |
WAHID M F, TAFRESHI R, AL-SOWAIDI M, et al Subject-independent hand gesture recognition using normalization and machine learning algorithms[J]. Journal of Computational Science, 2018, 27: 69- 76
doi: 10.1016/j.jocs.2018.04.019
|
16 |
TEPE C, ERDIM M Classification of surface electromyography and gyroscopic signals of finger gestures acquired by Myo armband using machine learning methods[J]. Biomedical Signal Processing and Control, 2022, 75: 103588
doi: 10.1016/j.bspc.2022.103588
|
17 |
JARAMILLO-YANEZ A, UNAPANTA L, BENALCÁZAR M E. Short-term hand gesture recognition using electromyography in the transient state, support vector machines, and discrete wavelet transform [C]// 2019 IEEE Latin American Conference on Computational Intelligence . Guayaquil: IEEE, 2019: 1−6.
|
18 |
WAHID M F, TAFRESHI R, AL-SOWAIDI M, et al. An efficient approach to recognize hand gestures using machine-learning algorithms [C]// 2018 IEEE 4th Middle East Conference on Biomedical Engineering . Tunis: IEEE, 2018: 171−176.
|
19 |
ZHANG Z, GEIGER J, POHJALAINEN J, et al Deep learning for environmentally robust speech recognition: an overview of recent developments[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9 (5): 49
|
20 |
YU S, JIA S, XU C Convolutional neural networks for hyperspectral image classification[J]. Neurocomputing, 2017, 219: 88- 98
doi: 10.1016/j.neucom.2016.09.010
|
21 |
KHAN A, SOHAIL A, ZAHOORA U, et al A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53 (8): 5455- 5516
doi: 10.1007/s10462-020-09825-6
|
22 |
CHAIYAROJ A, SRI-IESARANUSORN P, BUEKBAN C, et al. Deep neural network approach for hand, wrist, grasping and functional movements classification using low-cost sEMG sensors [C]// 2019 IEEE International Conference on Bioinformatics and Biomedicine . San Diego: IEEE, 2019: 1443−1448.
|
23 |
TSINGANOS P, CORNELIS B, CORNELIS J, et al. Improved gesture recognition based on sEMG signals and TCN [C]// 2019 IEEE International Conference on Acoustics, Speech and Signal Processing . Brighton: IEEE, 2019: 1169−1173.
|
24 |
SHEN S, GU K, CHEN X, et al Gesture recognition through sEMG with wearable device based on deep learning[J]. Mobile Networks and Applications, 2020, 25: 2447- 2458
doi: 10.1007/s11036-020-01590-8
|
25 |
陈思佳, 罗志增 基于长短时记忆和卷积神经网络的手势肌电识别研究[J]. 仪器仪表学报, 2021, 42 (2): 162- 170 CHEN Sijia, LUO Zhizeng Research on gesture EMG recognition based on long short-term memory and convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2021, 42 (2): 162- 170
|
26 |
LI Y, YANG L, HE Z, et al Low-cost data glove based on deep-learning-enhanced flexible multiwalled carbon nanotube sensors for real-time gesture recognition[J]. Advanced Intelligent Systems, 2022, 4 (11): 2200128
doi: 10.1002/aisy.202200128
|
27 |
LI Y, ZHANG W, ZHANG Q, et al Transfer learning-based muscle activity decoding scheme by low-frequency sEMG for wearable low-cost application[J]. IEEE Access, 2021, 9: 22804- 22815
doi: 10.1109/ACCESS.2021.3056412
|
28 |
HE Y, FUKUDA O, BU N, et al. Surface EMG pattern recognition using long short-term memory combined with multilayer perceptron [C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society . Honolulu: IEEE, 2018: 5636−5639.
|
29 |
TSINGANOS P, CORNELIS B, CORNELIS B, et al. Deep learning in EMG-based gesture recognition [C]// International Conference on Physiological Computing Systems . Seville: [s. n.], 2018: 107−114.
|
30 |
CASTELLINI C, VAN DER SMAGT P Surface EMG in advanced hand prosthetics[J]. Biol Cybern, 2009, 100 (1): 35- 47
doi: 10.1007/s00422-008-0278-1
|
31 |
FARINA D, JIANG N, REHBAUM H, et al The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22 (4): 797- 809
doi: 10.1109/TNSRE.2014.2305111
|
32 |
SIMÃO M, MENDES N, GIBARU O, et al A review on electromyography decoding and pattern recognition for human-machine interaction[J]. IEEE Access, 2019, 7: 39564- 39582
doi: 10.1109/ACCESS.2019.2906584
|
33 |
XU H, XIONG A Advances and disturbances in sEMG-based intentions and movements recognition: a review[J]. IEEE Sensors Journal, 2021, 21 (12): 13019- 13028
doi: 10.1109/JSEN.2021.3068521
|
34 |
XIONG D, ZHANG D, ZHAO X, et al Deep learning for EMG-based human-machine interaction: a review[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (3): 512- 533
doi: 10.1109/JAS.2021.1003865
|
35 |
KETYKÓ I, KOVÁCS F, VARGA K Z. Domain adaptation for sEMG-based gesture recognition with recurrent neural networks [C]// 2019 International Joint Conference on Neural Networks . Budapest: IEEE, 2019: 1−7.
|
36 |
SOSIN I, KUDENKO D, SHPILMAN A. Continuous gesture recognition from sEMG sensor data with recurrent neural networks and adversarial domain adaptation [C]// 2018 15th International Conference on Control, Automation, Robotics and Vision . Singapore: IEEE, 2018: 1436−1441.
|
37 |
ATZORI M, GIJSBERTS A, CASTELLINI C, et al Electromyography data for non-invasive naturally-controlled robotic hand prostheses[J]. Scientific Data, 2014, 1: 140053
doi: 10.1038/sdata.2014.53
|
38 |
GENG W, DU Y, JIN W, et al Gesture recognition by instantaneous surface EMG images[J]. Scientific Reports, 2016, 6: 36571
doi: 10.1038/srep36571
|
39 |
HUDGINS B, PARKER P, SCOTT R N A new strategy for multifunction myoelectric control[J]. IEEE Transactions on Biomedical Engineering, 1993, 40 (1): 82- 94
doi: 10.1109/10.204774
|
40 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 7132−7141.
|
41 |
ATREY P K, HOSSAIN M A, EI SADDIK A, et al Multimodal fusion for multimedia analysis: a survey[J]. Multimedia Systems, 2010, 16: 345- 379
doi: 10.1007/s00530-010-0182-0
|
42 |
ZHU Y, ZHUANG F, WANG J, et al Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (4): 1713- 1722
doi: 10.1109/TNNLS.2020.2988928
|
43 |
DU Y, WONG Y, JIN W, et. al. Semi-supervised learning for surface EMG-based gesture recognition [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence . Melbourne: AAAI Press, 2017: 1624–1630.
|
44 |
XU Z, YU J, XIANG W, et al A novel SE-CNN attention architecture for sEMG-based hand gesture recognition[J]. Computer Modeling in Engineering and Sciences, 2023, 134 (1): 157- 177
doi: 10.32604/cmes.2022.020035
|
45 |
JOSEPHS D, DRAKE C, HEROY A, et al sEMG gesture recognition with a simple model of attention[J]. Machine Learning for Health, 2020, 136: 126- 138
|
46 |
PENG F, CHEN C, LV D, et al Gesture recognition by ensemble extreme learning machine based on surface electromyography signals[J]. Frontiers in Human Neuroscience, 2022, 16: 1- 14
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|