Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1209-1220    DOI: 10.3785/j.issn.1008-973X.2024.06.011
土木工程、交通工程     
不同渗漏位置下管道渗蚀物理模型试验及细观机理研究
王子业(),谭勇*(),龙莹莹
同济大学 土木工程学院,上海 200092
Seepage erosion test and its mesoscopic mechanism at different pipeline-leaking locations
Ziye WANG(),Yong TAN*(),Yingying LONG
College of Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(2761 KB)   HTML
摘要:

针对管道渗漏诱发的地面塌陷问题,采用级配均匀的福建标准砂,研究管道不同渗漏位置对水土流失发展规律的影响. 利用离散元与有限差分耦合(DEM-FDM)的方法在细观层面对管道渗漏进行模拟,探究管道不同渗漏位置对地层应力以及渗流侵蚀发展的影响,分析渗漏前后管道所受水、土压力的变化以及土拱的发展情况. 试验及数据模拟研究结果表明:1)管道渗漏会经历初步渗漏、渗漏发展、渗漏收敛3个阶段. 2)管道腰部发生渗漏会对地层造成更大的扰动并受到更为强烈的渗流侵蚀作用,诱发更为严重的地面塌陷. 3)管道发生渗漏后,管道表面渗漏处受到的土压力会减小,而管道表面渗漏处周围所受到的土压力会增加,但其受到的水土合力基本保持不变. 4)管道不同位置发生渗漏时,管道表面土压力的发展是不同的:顶部发生渗漏,管道表面渗漏处周围土压力逐渐减小;腰部发生渗漏,管道表面不同位置处的土压力则分别展现出增加、减小以及不变3种趋势.

关键词: 管道渗漏渗漏位置渗流侵蚀DEM-FDM土拱    
Abstract:

The effects of different pipeline-leaking locations on losses of soil and water were investigated using uniformly graded Fujian standard sand, for the ground collapse induced by pipeline leaking. Discrete element method-finite difference method (DEM-FDM) numerical analyses were carried out to reveal the mesoscopic mechanism for pipeline leakage. The effects of different leaking locations on seepage erosion and the change of soil stress were analyzed. The development of water and soil pressure as well as the soil arching were explored during pipeline leaking. Both experimental test and numerical simulation results are as follows. 1) The process of erosion includes three stages, initial erosion, development stage and convergence stage. 2) The leakage occurring at the pipeline side causes serious erosion and induces catastrophic ground collapse due to more disturbance to the stratum and greater seepage force. 3) The soil pressure shows decreasing trend near the pipeline leakage location and increasing trend further away pipeline leakage location. Also, the sum pressure of soil and water near the pipeline leakage location remains unchanged. 4) The developments of soil pressure on pipeline are different for various leaking locations. For the leakage at the top of the pipeline, the soil pressure around the leakage gradually decreases. For the leakage at the side of the pipeline, the development of soil pressure shows three trends, increasing, decreasing and unchanging.

Key words: pipeline leakage    leakage location    seepage erosion    DEM-FDM    soil arching
收稿日期: 2023-07-29 出版日期: 2024-05-25
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(42177179).
通讯作者: 谭勇     E-mail: Wangziye1998@163.com;tanyong21th@tongji.edu.cn
作者简介: 王子业(1998—),男,博士生,从事管道渗流侵蚀研究. orcid.org/0009-0002-5752-0309. E-mail:wangziye1998@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王子业
谭勇
龙莹莹

引用本文:

王子业,谭勇,龙莹莹. 不同渗漏位置下管道渗蚀物理模型试验及细观机理研究[J]. 浙江大学学报(工学版), 2024, 58(6): 1209-1220.

Ziye WANG,Yong TAN,Yingying LONG. Seepage erosion test and its mesoscopic mechanism at different pipeline-leaking locations. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1209-1220.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.011        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1209

图 1  管道渗漏侵蚀试验装置示意图
参数Gseminemaxρmin / (g·cm?3)ρmax / (g·cm?3)
2.630.520.841.431.73
表 1  福建标准砂物理特性参数
图 2  试验用福建标准砂颗粒级配曲线
试验工况H管道渗漏
破坏位置
Hw
Case 14R4R
Case 24R4R
表 2  管道不同渗漏位置试验方案表
图 3  Case 1 土体侵蚀发展图
图 4  Case 2 土体侵蚀发展图
图 5  砂水流失测量装置
图 6  不同工况下砂水累积流失量随时间的变化
工况vs / (g·s?1vw / (g·s?1msum /gr
Case 113.314.14704.41.06
Case 221.923.68829.81.08
表 3  管道不同渗漏位置下砂水流失特性
图 7  PFC中砂土的内摩擦角标定结果
单元PFC参数数值
颗粒参数
(ball单元)
颗粒粒径/mm2~3
颗粒密度/(g·cm?32.2
颗粒摩擦系数0.5
颗粒法向刚度/( N·m?1)1×106
颗粒切向刚度/( N·m?1)0.8×106
阻尼系数(局部阻尼)0.7
法向黏滞阻尼系数0.2
孔隙率0.15
模型箱参数(wall单元)墙体法向接触刚度/( N·m?1)1.5×108
墙体切向接触刚度/( N·m?1)2.0×108
墙体摩擦系数0.0
管道参数
(wall单元)
墙体法向接触刚度/( N·m?1)3.0×1011
墙体切向接触刚度/( N·m?1)3.0×1011
墙体摩擦系数0.5
表 4  管道渗漏数值模拟参数取值表
图 8  PFC数值模型土压力与规范土压力对比
图 9  DEM-FDM流固耦合模型
图 10  管道0°与90°渗漏下地层侵蚀的发展
图 11  管道不同位置渗漏后土体竖向有效应力的变化
图 12  管道渗漏过程中破损口周围水力梯度的变化
图 13  管道表面土压力计算示意图
图 14  未渗漏时管道表面压力分布
图 15  不同位置渗漏后管道表面压力分布情况
图 16  不同位置渗漏后管道表面土压力与总压力的对比
图 17  不同渗漏位置下管道表面土压力的发展
1 胡聿涵, 白玉川, 徐海珏 近10年中国城市道路塌陷原因及防治对策分析[J]. 公路, 2016, 61 (9): 130- 135
HU Jinhan, BAI Yuchuan, XU Haiyu Analysis on causes and countermeasures of urban road collapse in recent 10 years in China[J]. Highway, 2016, 61 (9): 130- 135
2 陈雨昂, 唐荣, 方建, 等 2014—2018年中国城市路面塌陷时空规律与原因分析[J]. 水利水电技术, 2020, 51 (7): 108- 116
CHEN Yuang, TANG Rong, FANG Jian, et al Analysis on spatio-temporal law and causation of urban road collapse in China from 2014 to 2018[J]. Water Resources and Hydropower Engineering, 2020, 51 (7): 108- 116
3 TAN Y, LONG Y Y Review of cave-in failures of urban roadways in China: a database[J]. Journal of Performance of Constructed Facilities, 2021, 35 (6): 0821004
4 MUKUNOKI T, KUMANO N, OTANI J, et al Visualization of three dimensional failure in sand due to water inflow and soil drainage from defective underground pipe using X-ray CT[J]. Soils and Foundations, 2009, 49 (6): 959- 968
doi: 10.3208/sandf.49.959
5 GUO S, SHAO Y, ZHANG T Q, et al Physical modeling on sand erosion around defective sewer pipes under the influence of groundwater[J]. Journal of Hydraulic Engineering, 2013, 139 (12): 1247- 1257
doi: 10.1061/(ASCE)HY.1943-7900.0000785
6 郑刚, 戴轩, 张晓双 地下工程漏水漏砂灾害发展过程的试验研究及数值模拟[J]. 岩石力学与工程学报, 2014, 33 (12): 2458- 2471
ZHENG Gang, DAI Xuan, ZAHNG Xiaoshuang Experiment study and numerical simulation of leaking process of sand and water in underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (12): 2458- 2471
7 SATO M, KUWANO R Influence of location of subsurface structures on development of underground cavities induced by internal erosion[J]. Soils and Foundations, 2015, 55 (4): 829- 840
doi: 10.1016/j.sandf.2015.06.014
8 张冬梅, 杜伟伟, 高程鹏 间断级配砂土中管线破损引起的渗流侵蚀模型试验[J]. 岩土工程学报, 2018, 40 (11): 2129- 2135
ZHANG Dongmei, DU Weiwei, GAO Chengpeng Model tests on seepage erosion caused by pipeline damage in gap-grading sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (11): 2129- 2135
doi: 10.11779/CJGE201811020
9 刘成禹, 陈博文, 林炜, 等 地下管道破损诱发沉降的预测模型及试验验证[J]. 岩土工程学报, 2021, 43 (3): 416- 424
LIU Chengyu, CHEN Bowen, LIN Wei, et al Prediction model for settlement caused by damage of underground pipelines and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (3): 416- 424
doi: 10.11779/CJGE202103003
10 钟世英, 时文浩, 王堉众, 等 不同相对密实度下砂土侵蚀破坏试验研究[J]. 山东建筑大学学报, 2022, 37 (1): 49- 55
ZHONG Shiying, SHI Wenhao, WANG Yuzhong, et al Experimental study on erosion and destruction of sandy soil under different relative compactness[J]. Journal of Shandong Jianzhu University, 2022, 37 (1): 49- 55
doi: 10.12077/sdjz.2022.01.007
11 ZHANG D M, DU W W, PENG M Z, et al Experimental and numerical study of internal erosion around submerged defective pipe[J]. Tunnelling and Underground Space Technology, 2020, 97: 103256
doi: 10.1016/j.tust.2019.103256
12 LONG Y Y, TAN Y Soil arching due to leaking of tunnel buried in water-rich sand[J]. Tunnelling and Underground Space Technology, 2020, 95: 103158
doi: 10.1016/j.tust.2019.103158
13 蔡剑韬, 付栋, 李婧铭, 等 上海浅部砂层管道渗漏引发塌陷的数值模拟[J]. 地下空间与工程学报, 2021, 17 (6): 1980- 1987
CAI Jiantao, FU Dong, LI Jinming, et al Numerical simulation of ground collapse induced by pipeline leakage in Shallow sand layer of shanghai area[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (6): 1980- 1987
14 MOHAMED H I, RABEY S H, DARWEESH M S Laboratory investigation of ground surface settlement caused by erosion around a leaking pipe[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13 (1): 04021080
doi: 10.1061/(ASCE)PS.1949-1204.0000629
15 TANG Y, ZHU D Z, CHAN D H, et al Physical and analytical modeling of soil loss caused by a defective sewer pipe with different defect locations[J]. Acta Geotechnica, 2023, 18 (5): 2639- 2659
doi: 10.1007/s11440-022-01747-7
16 BRACHMAN R, MOORE I D, ROWE R K The design of a laboratory facility for evaluating the structural response of small-diameter buried pipes[J]. Canadian Geotechnical Journal, 2000, 37 (2): 281- 295
doi: 10.1139/t99-104
17 FANG H Y, LI B, WANG F M, et al The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing[J]. Tunnelling and Underground Space Technology, 2018, 74: 185- 194
doi: 10.1016/j.tust.2018.01.018
18 邢丽贞. 给排水管道设计与施工[M]. 北京: 化学工业出版社, 2009: 214-256.
19 中华人民共和国建设部. 给水排水工程管道结构设计规范: GB50332-2002 [S]. 北京: 中国建筑工业出版社, 2002.
20 KONDIC L Simulations of two dimensional hopper flow[J]. Granular Matter, 2014, 16 (2): 235- 242
doi: 10.1007/s10035-013-0462-4
21 Itasca Consultant Group. Particle flow code in 2 dimensions online manual version 5.0 [EB/OL]. [2023-07-01]. https://docs.itascacg.com/pfc600/pfc/docproject/index.html.
22 CARMAN P C. Flow of gases through porous media [M]. London: Butterworths Scientific Publications, 1956: 182.
23 张刚. 管涌现象细观机理的模型试验与颗粒流数值模拟研究[D]. 上海: 同济大学, 2007.
ZHANG Gang. Researchers on meso-scale mechanism of piping failure by means of model test and pfc numerical simulation [D]. Shanghai: Tongji University, 2007.
24 周国庆, 周杰, 陆勇, 等 颗粒流程序(PFC~(2D))中阻尼参数的适用性研究[J]. 中国矿业大学学报, 2011, 40 (5): 667- 672
ZHOU Guoqing, ZHOU Jie, LU Yong, et al Selection of damping parameters used in a particle flow code (PFC 2D)[J]. Journal of China University of Mining and Technology, 2011, 40 (5): 667- 672
25 JIANG M J, KONRAD J M, LEROUEIL S An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30 (7): 579- 597
doi: 10.1016/S0266-352X(03)00064-8
26 王直民. 交通荷载作用下埋地管道的力学性状研究[D]. 杭州: 浙江大学, 2006.
WANG Zhimin. Study on mechanical behaviors of buried pipelines under traffic loads [D]. Hangzhou: Zhejiang University, 2006.
[1] 张春新,朱鸿鹄,李豪杰,张巍,刘春. 支护压力控制下隧道周围砂土变形破坏物质点法模拟[J]. 浙江大学学报(工学版), 2021, 55(7): 1317-1326.
[2] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[3] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[4] 邱子义,韩同春,豆红强,李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 551-558.
[5] 王柏生 何宗成 袁野. 混凝土拱坝裂缝损伤检测振动法的试验研究[J]. , 2009, 43(4): 738-742.
[6] 朱剑锋 徐日庆. 考虑时效和土拱效应桩锚基坑土压力计算方法[J]. , 2009, 43(4): 766-770.
[7] 蒋波 应宏伟 谢康和. 挡土墙后土体拱效应分析[J]. J4, 2005, 39(1): 131-136.
[8] 张治成 叶贵如 陈衡治 徐兴. 大跨度桥梁施工控制结构分析计算方法[J]. J4, 2004, 38(2): 210-214.