土木工程 |
|
|
|
|
基于贝叶斯MCMC方法的城市建筑供热能耗基准 |
那威1( ),邴佳乐1,刘品妍2 |
1. 北京建筑大学 环境与能源工程学院,北京 100044 2. 北京建筑大学 建筑与城市规划学院,北京 100044 |
|
Urban building heating energy consumption benchmark based on Bayesian MCMC method |
Wei NA1( ),Jia-le BING1,Pin-yan LIU2 |
1. School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 2. School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
1 |
李紫微, 林波荣, 陈洪钟 建筑方案能耗快速预测方法研究综述[J]. 暖通空调, 2018, 48 (5): 8 LI Zi-wei, LIN Bo-rong, CHEN Hong-zhong Review of rapid prediction method of building energy consumption[J]. Heating Ventilating and Air Conditioning, 2018, 48 (5): 8
|
2 |
柳靖, 赵雨旸, 张岚 建筑能耗基准研究综述[J]. 建筑科学, 2021, 37 (12): 120- 130 LIU Jing, ZHAO Yu-yang, ZHANG Lan Literature review on building energy consumption benchmark[J]. Building Science, 2021, 37 (12): 120- 130
doi: 10.13614/j.cnki.11-1962/tu.2021.12.17
|
3 |
曹勇, 魏峥, 刘辉, 等 德国VDI3807标准对我国能耗定额的启示[J]. 建设科技, 2011, (22): 78- 81 CAO Yong, WEI Zheng, LIU Hui, et al The enlightenment of German VDI3807 standard to Chinese energy consumption quota[J]. Construction Science and Technology, 2011, (22): 78- 81
doi: 10.3969/j.issn.1671-3915.2011.22.041
|
4 |
魏峥, 邹瑜, 王虹 英国公共建筑能耗基准评价方法对我国建筑能耗定额方法的启示[J]. 建筑科学, 2011, 27 (10): 7- 12 WEI Zheng, ZOU Yu, WANG Hong Introduction on British public building energy consumption benchmark evaluation methods and enlightenment for China[J]. Building Science, 2011, 27 (10): 7- 12
doi: 10.3969/j.issn.1002-8528.2011.10.002
|
5 |
朱明亚, 潘毅群, 吕岩, 等 能耗预测模型在建筑能效优化中的应用研究[J]. 建筑科学, 2020, 36 (10): 35- 46 ZHU Ming-ya, PAN Yi-qun, Lv Yan, et al Application review of energy consumption prediction models in building energy efficiency optimization[J]. Building Science, 2020, 36 (10): 35- 46
doi: 10.13614/j.cnki.11-1962/tu.2020.10.05
|
6 |
U. S. department of energy’s ( DOE) building technologies office (BTO) energyplus [EB/OL]. [2022-03-25]. https://energyplus.net/.
|
7 |
TURHAN C, KAZANASMAZ T, UYGUN I E, et al Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation[J]. Energy and Buildings, 2014, 85: 115- 125
doi: 10.1016/j.enbuild.2014.09.026
|
8 |
鲁艳蕊 基于Design Builder模拟的郑州高层办公建筑能耗研究[J]. 山东农业大学学报: 自然科学版, 2020, 51 (2): 355- 359 LU Yan-rui Study on energy consumption of high rise office buildings in Zhengzhou based on design builder simulation[J]. Journal of Shandong Agricultural University: Natural Science Edition, 2020, 51 (2): 355- 359
|
9 |
LI K, HU C, LIU G, et al Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis[J]. Energy and Buildings, 2015, 108: 106- 113
doi: 10.1016/j.enbuild.2015.09.002
|
10 |
WANG E, SHEN Z, GROSSKOPF K Benchmarking energy performance of building envelopes through a selective residual-clustering approach using high dimensional dataset[J]. Energy and Buildings, 2014, 75: 10- 22
doi: 10.1016/j.enbuild.2013.12.055
|
11 |
ROTH J, RAJAGOPAL R Benchmarking building energy efficiency using quantile regression[J]. Energy, 2018, 152: 866- 876
doi: 10.1016/j.energy.2018.02.108
|
12 |
潘毅群. 实用建筑能耗模拟手册[M]. 北京: 中国建筑工业出版社, 2013: 45-48.
|
13 |
NETO A H, FIORELLI F A S Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption[J]. Energy and Buildings, 2008, 40 (12): 2169- 2176
doi: 10.1016/j.enbuild.2008.06.013
|
14 |
YANG Z, ROTH J, JAIN R K DUE-B: data-driven urban energy benchmarking of buildings using recursive partitioning and stochastic frontier analysis[J]. Energy and Buildings, 2018, 163: 58- 69
doi: 10.1016/j.enbuild.2017.12.040
|
15 |
LIU J, CHEN H, LIU J, et al An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information[J]. Applied Energy, 2017, 206: 193- 205
doi: 10.1016/j.apenergy.2017.08.153
|
16 |
YALCINTAS M An energy benchmarking model based on artificial neural network method with a case example for tropical climates[J]. International Journal of Energy Research, 2010, 30 (14): 1158- 1174
|
17 |
LI Y, O'NEILL Z, ZHANG L, et al Grey box modeling and application for building energy simulations a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111174
doi: 10.1016/j.rser.2021.111174
|
18 |
BRAUN J E, CHATURVEDI N An inverse gray-box model for transient building load prediction[J]. HVAC and R Research, 2002, 8 (1): 73- 99
doi: 10.1080/10789669.2002.10391290
|
19 |
石欣, 张琦, 赵莹, 等 RC热网络建筑能耗预测模型综述[J]. 仪器仪表学报, 2014, 35 (S2): 59- 65 SHI Xin, ZHANG Qi, ZHAO Ying, et al Review of RC thermal network building energy consumption forecasting model[J]. Chinese Journal of Scientific Instrument, 2014, 35 (S2): 59- 65
doi: 10.19650/j.cnki.cjsi.2014.s2.009
|
20 |
XIAO H, WEI Q, JIANG Y The reality and statistical distribution of energy consumption in office buildings in China[J]. Energy and Buildings, 2012, 50: 259- 265
doi: 10.1016/j.enbuild.2012.03.048
|
21 |
HUO T, REN H, ZHANG X, et al China's energy consumption in the building sector: a statistical year book energy balance sheet based splitting method[J]. Journal of Cleaner Production, 2018, 185: 665- 679
doi: 10.1016/j.jclepro.2018.02.283
|
22 |
ZHANG M, GE X, ZHAO Y, et al Creating statistics for China’s building energy consumption using an adapted energy balance sheet[J]. Energies, 2019, 12 (22): 4293
doi: 10.3390/en12224293
|
23 |
Characteristic values of energy consumption in buildings − Heating and electricity: VDI 3807 Sheet 2[S]. Verband Deutscher Ingenieure/Association of German Engineers. 1998: 87-97.
|
24 |
YAN D, O’BRIEN W, HONG T, et al Occupant behavior modeling for building performance simulation: current state and future challenges[J]. Energy and Buildings, 2015, 107: 264- 278
doi: 10.1016/j.enbuild.2015.08.032
|
25 |
REINHART C F, DAVILA C C Urban building energy modeling a review of a nascent field[J]. Building and Environment, 2016, 97: 196- 202
doi: 10.1016/j.buildenv.2015.12.001
|
26 |
YANG Z, BECERIKGERBER B A model calibration framework for simultaneous multi-level building energy simulation[J]. Applied Energy, 2015, 149: 415- 431
doi: 10.1016/j.apenergy.2015.03.048
|
27 |
DENG H, FANNON D, ECKELMAN M Predictive modeling for US commercial building energy use: a comparison of existing statistical and machine learning algorithms using CBECS microdata[J]. Energy and Buildings, 2017, 163: 34- 43
|
28 |
DAHLIN J. Accelerating monte Carlo methods for Bayesian inference in dynamical models [M]. Sweden: LUEP, 2016: 59-67.
|
29 |
DRONKELAAR C V, DOWSON M, SPATARU C, et al A review of the regulatory energy performance gap and its underlying causes in nondomestic buildings[J]. Frontiers in Mechanical Engineering, 2016, 1: 1- 14
|
30 |
WEI Y, ZHANG X, SHI Y, et al A review of data driven approaches for prediction and classification of building energy consumption[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1027- 1047
doi: 10.1016/j.rser.2017.09.108
|
31 |
ARNQVIST G Mixed models offer no freedom from degrees of freedom[J]. Trends in Ecology and Evolution, 2020, 35 (4): 329- 335
doi: 10.1016/j.tree.2019.12.004
|
32 |
BOLKER B M, BROOKS M E, CLARK C J, et al Generalized linear mixed models: a practical guide for ecology and evolution[J]. Trends in Ecology and Evolution, 2009, 24 (3): 127- 135
doi: 10.1016/j.tree.2008.10.008
|
33 |
HARRISON X A, DONALDSON L, CORREA CANO M E, et al A brief introduction to mixed effects modelling and multi-model inference in ecology[J]. Peer J, 2018, 6: 4794
doi: 10.7717/peerj.4794
|
34 |
KELLY R, HEALY K, ANAND M, et al Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale[J]. Ecology Letters, 2021, 24 (5): 970- 983
doi: 10.1111/ele.13704
|
35 |
NAKAGAWA S, SCHIELZETH H A general and simple method for obtaining R2 from generalized linear mixed effects models[J]. Methods in Ecology and Evolution, 2013, 4 (2): 133- 142
doi: 10.1111/j.2041-210x.2012.00261.x
|
36 |
RAILLON L, GHIAUS C An efficient Bayesian experimental calibration of dynamic thermal models[J]. Energy, 2018, 152: 818- 833
doi: 10.1016/j.energy.2018.03.168
|
37 |
SANKARARAMAN S, MCLEMORE K, MAHADEVAN S. Bayesian methods for uncertainty quantification in multi-level systems [C]// Topics in Model Validation and Uncertainty Quantification, Volume 4: Proceedings of the 30th IMAC, A Conference on Structural Dynamics. New York: Springer, 2012: 67-74.
|
38 |
WANG C K, TINDEMANS S, MILLER C, et al Bayesian calibration at the urban scale: a case study on a large residential heating demand application in Amsterdam[J]. Journal of Building Performance Simulation, 2020, 13 (3): 347- 361
doi: 10.1080/19401493.2020.1729862
|
39 |
LAMBERT P C, SUTTON A J, BURTON P R, et al How vague is vague, a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS[J]. Stat Med, 2005, 24 (15): 2401- 2428
doi: 10.1002/sim.2112
|
40 |
WANG X, HE C Z, SUN D Bayesian population estimation for small sample capture-recapture data using noninformative priors[J]. Journal of Statistical Planning and Inference, 2007, 137 (4): 1099- 1118
doi: 10.1016/j.jspi.2006.03.004
|
41 |
尹爱军, 赵磊, 吴宏钢 相关法动平衡校正中的3σ准则误差处理方法[J]. 重庆大学学报, 2013, 36 (10): 22- 26 YIN Ai-jun, ZHAO Lei, WU Hong-gang Error process based on 3σ rule used in balancing by correlation theory[J]. Journal of Chongqing University, 2013, 36 (10): 22- 26
|
42 |
胡沛然, 陈少辉 权重归一化拉格朗日插值及其空间降尺度应用[J]. 遥感信息, 2019, 34 (6): 63- 71 HU Pei-ran, CHEN Shao-hui Weight normalization based lagrange interpolation and its application in downscaling[J]. Remote Sensing Information, 2019, 34 (6): 63- 71
doi: 10.3969/j.issn.1000-3177.2019.06.011
|
43 |
GELMAN A, HWANG J, VEHTARI A Understanding predictive information criteria for Bayesian models[J]. Statistics and Computing, 2014, 24 (6): 997- 1016
doi: 10.1007/s11222-013-9416-2
|
44 |
BROOKS S P, GELMAN A General methods for monitoring convergence of iterative simulations[J]. Journal of Computational and Graphical Statistics, 1998, 7 (4): 434- 455
|
45 |
GELMAN A, CARLIN J B, STERN H S, et al. Bayesian data analysis, third edition [M]. Boca Raton: CRCP, 2013: 281-286.
|
46 |
ASHRAE. ASHRAE Guideline 14–2014: Measurement of energy, demand, and water savings[S]. Atlanta: ASHRAE, 2014: 21-25.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|