计算机技术与控制工程 |
|
|
|
|
图卷积融合计算时效网络节点重要性评估分析 |
周传华1,2( ),操礼春1,周家亿3,詹凤4 |
1. 安徽工业大学 管理科学与工程学院,安徽 马鞍山 243032 2. 中国科学技术大学 计算机科学与技术学院,安徽 合肥 230027 3. 国家电网江苏电力营销服务中心,江苏 南京 210019 4. 马鞍山学院,安徽 马鞍山 243100 |
|
Identification of critical nodes in temporal networks based on graph convolution union computing |
Chuan-hua ZHOU1,2( ),Li-chun CAO1,Jia-yi ZHOU3,Feng ZHAN4 |
1. School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China 2. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China 3. Marketing Service Center of Jiangsu Electric Power Co. Ltd, Nanjing 210019, China 4. Maanshan University, Maanshan 243100, China |
引用本文:
周传华,操礼春,周家亿,詹凤. 图卷积融合计算时效网络节点重要性评估分析[J]. 浙江大学学报(工学版), 2023, 57(5): 930-938.
Chuan-hua ZHOU,Li-chun CAO,Jia-yi ZHOU,Feng ZHAN. Identification of critical nodes in temporal networks based on graph convolution union computing. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 930-938.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.009
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I5/930
|
1 |
HOLME P, SARAMÄKI J Temporal networks[J]. Physics Reports, 2012, 519 (3): 97- 125
doi: 10.1016/j.physrep.2012.03.001
|
2 |
WU L R, QI J Y, SHI N, et al Revealing the relationship of topics popularity and bursty human activity patterns in social temporal networks[J]. Physica A: Statistical Mechanics and its Applications, 2022, 588: 126568
doi: 10.1016/j.physa.2021.126568
|
3 |
黄强娟. 时序网络结构建模与演化分析研究[D]. 长沙: 国防科技大学, 2019: 3-4. HUANG Qiang-juan. Research on structure modeling and evolution analysis in temporal network [D]. Changsha: National University of Defense Technology, 2019: 3-4.
|
4 |
IÑIGUEZ G, PINEDA C, GERSHENSON C, et al Dynamics of ranking[J]. Nature Communications, 2022, 13: 1646
doi: 10.1038/s41467-022-29256-x
|
5 |
TAYLOR D, MYERS S A, CLAUSET A, et al Eigenvector-based centrality measures for temporal networks[J]. Multiscale Modeling and Simulation, 2017, 15 (1): 537- 574
doi: 10.1137/16M1066142
|
6 |
杨剑楠, 刘建国, 郭强 基于层间相似性的时序网络节点重要性研究[J]. 物理学报, 2018, 67 (4): 279- 286 YANG Jian-nan, LIU Jian-guo, GUO Qiang Node importance identification for temporal network based on inter-layer similarity[J]. Acta Physica Sinica, 2018, 67 (4): 279- 286
doi: 10.7498/aps.67.20172255
|
7 |
胡钢, 许丽鹏, 徐翔 基于时序网络层间同构率动态演化的重要节点辨识[J]. 物理学报, 2021, 70 (10): 355- 366 HU Gang, XU Li-peng, XU Xiang Evolution of inter-layer isomorphism rate in temporal networks[J]. Acta Physica Sinica, 2021, 70 (10): 355- 366
|
8 |
JIANG J L, FANG H, LI S Q, et al Identifying important nodes for temporal networks based on the ASAM model[J]. Physica A: Statistical Mechanics and its Applications, 2022, 586: 126455
doi: 10.1016/j.physa.2021.126455
|
9 |
TANG J, MUSOLESI M, MASCOLO C, et al. Temporal distance metrics for social network analysis [C]// Proceedings of the 2nd ACM Workshop on Online Social Networks. Barcelona: ACM, 2009: 31-36.
|
10 |
TANG J, SCELLATO S, MUSOLESI M, et al Small-world behavior in time-varying graphs[J]. Physical Review E, 2010, 81 (5): 055101
doi: 10.1103/PhysRevE.81.055101
|
11 |
KIM H, ANDERSON R Temporal node centrality in complex networks[J]. Physical Review E, 2012, 85 (2): 026107
doi: 10.1103/PhysRevE.85.026107
|
12 |
刘建国, 任卓明, 郭强, 等 复杂网络中节点重要性排序的研究进展[J]. 物理学报, 2013, 62 (17): 9- 18 LIU Jian-guo, REN Zhuo-ming, GUO Qiang, et al Node importance ranking of complex networks[J]. Acta Physica Sinica, 2013, 62 (17): 9- 18
doi: 10.7498/aps.62.178901
|
13 |
FREEMAN L C A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40 (1): 35- 41
doi: 10.2307/3033543
|
14 |
SABIDUSSI G The centrality index of a graph[J]. Psychometrika, 1966, 31 (4): 581- 603
doi: 10.1007/BF02289527
|
15 |
WANG Z, PEI X, WANG Y, et al. Ranking the key nodes with temporal degree deviation centrality on complex networks [C]// Proceedings of the 29th Chinese Control And Decision Conference (CCDC). Chongqing: IEEE, 2017: 1484-1489.
|
16 |
TAKAGUCHI T, YANO Y, YOSHIDA Y Coverage centralities for temporal networks[J]. The European Physical Journal B, 2016, 89 (2): 1- 11
|
17 |
YE Z H, ZHAN X X, ZHOU Y Z, et al. Identifying vital nodes on temporal networks: An edge-based k-shell decomposition [C]// Proceedings of the 36th Chinese Control Conference. Dalian: IEEE, 2017: 1402-1407.
|
18 |
KITSAK M, GALLOS L K, HAVLIN S, et al Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6 (11): 888- 893
doi: 10.1038/nphys1746
|
19 |
QU C Q, ZHAN X X, WANG G H, et al Temporal information gathering process for node ranking in time-varying networks[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29 (3): 033116
doi: 10.1063/1.5086059
|
20 |
梁耀洲, 郭强, 殷冉冉, 等 基于排名聚合的时序网络节点重要性研究[J]. 电子科技大学学报, 2020, 49 (4): 519- 523 LIANG Yao-zhou, GUO Qiang, YIN Ran-ran, et al Node importance identification for temporal network based on ranking aggregation[J]. Journal of University of Electronic Science and Technology of China, 2020, 49 (4): 519- 523
doi: 10.12178/1001-0548.2019087
|
21 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2017-02-22]. https://arxiv.org/abs/1609.02907.
|
22 |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. XU Bing-bing, CEN Ke-ting, HUANG Jun-jie, et al. A survey on graph convolutional neural network[ J]. Chinese Journal of Computers, 2020, 43(5): 755-780.
|
23 |
LECUN Y, BOTTOU L, BENGIO Y Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324
doi: 10.1109/5.726791
|
24 |
张林, 程华, 房一泉 基于卷积神经网络的链接表示及预测方法[J]. 浙江大学学报: 工学版, 2018, 52 (3): 552- 559 ZHANG Lin, CHENG Hua, FANG Yi-quan CNN-based link representation and prediction method[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 552- 559
|
25 |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs [EB/OL]. [2014-05-21]. https://arxiv.org/abs/1312.6203.
|
26 |
HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016: 770-778.
|
27 |
ROZENSHTEIN P, GIONIS A. Temporal pagerank [C]// Proceedings of the Machine Learning and Knowledge Discovery in Databases. Riva del Garda: Springer, 2016: 674-689.
|
28 |
BI J L, JIN J, QU C Q, et al Temporal gravity model for important node identification in temporal networks[J]. Chaos, Solitons and Fractals, 2021, 147: 110934
doi: 10.1016/j.chaos.2021.110934
|
29 |
GÉNOIS M, VESTERGAARD C L, FOURNET J, et al Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers[J]. Network Science, 2015, 3 (3): 326- 347
doi: 10.1017/nws.2015.10
|
30 |
KLIMT B, YANG Y M. The enron corpus: a new dataset for email classification research [C]// Proceedings of the European Conference on Machine Learning. Pisa: Springer, 2004: 217-226.
|
31 |
GÉNOIS M, BARRAT A Can co-location be used as a proxy for face-to-face contacts?[J]. EPJ Data Science, 2018, 7 (1): 11
doi: 10.1140/epjds/s13688-018-0140-1
|
32 |
LATORA V, MARCHIORI M Efficient behavior of small-world networks[J]. Physical Review Letters, 2001, 87 (19): 198701
doi: 10.1103/PhysRevLett.87.198701
|
33 |
IYER S, KILLINGBACK T, SUNDARAM B, et al Attack robustness and centrality of complex networks[J]. PloS One, 2013, 8 (4): e59613
doi: 10.1371/journal.pone.0059613
|
34 |
KENDALL M G A new measure of rank correlation[J]. Biometrika, 1938, 30 (1-2): 81- 93
doi: 10.1093/biomet/30.1-2.81
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|