Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 693-701    DOI: 10.3785/j.issn.1008-973X.2023.04.006
自动化技术、计算机技术     
基于高斯回归学习的场景优化鲁棒预测控制
熊伟亮(),何德峰*(),王秀丽,周丹
浙江工业大学 信息工程学院,浙江 杭州 310012
Scenario optimization robust predictive control via Gaussian regression learning
Wei-liang XIONG(),De-feng HE*(),Xiu-li WANG,Dan ZHOU
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310012, China
 全文: PDF(1863 KB)   HTML
摘要:

针对具有未知加性不确定性的约束线性系统,提出基于高斯过程回归学习的场景优化鲁棒模型预测控制算法. 在离线阶段使用高斯回归从经验数据中学习不确定性结构与参数,能够抽取大量随机场景. 在在线控制阶段中,求解抽取场景所构建的有限时域优化问题,将滚动优化得到的控制律作用于系统. 引入松弛变量保证优化问题的可行性,应用随机凸优化理论,证明所提算法使系统以一定的置信度满足松弛机会约束,收敛于终端域. 通过DC-DC转换器和网联车巡航控制仿真实验,验证了本文算法的有效性和优越性.

关键词: 鲁棒模型预测控制场景优化高斯回归学习机会约束随机凸优化    
Abstract:

A scenario optimization robust model predictive control algorithm based on Gaussian process regression was proposed for constrained linear systems with unknown additive uncertainty. The Gaussian regression was used to learn the uncertainty parameter from the empirical data in the offline stage, so that sufficient scenarios could be obtained. The finite-horizon optimal control problem constructed by extracted scenarios was solved in the online control stage, and the control law obtained by rolling optimization was used to control the system. The relaxation variable was introduced to ensure the feasibility of the optimization problem. Then the random convex optimization theory was used. It was proved that the closed-loop system satisfied the relaxed chance constraint and converged to the terminal set with certain confidence bound. The control simulation experiments of a DC-DC converter and a connected vehicle cruise system illustrated the feasibility and merits of the proposed algorithm.

Key words: robust model predictive control    scenario optimization    Gaussian regression learning    chance constraint    random convex optimization
收稿日期: 2022-04-26 出版日期: 2023-04-21
CLC:  TP 273  
基金资助: 国家自然科学基金资助项目(62173303);浙江省属高校基本科研业务费资助项目(RF-C2020003)
通讯作者: 何德峰     E-mail: 17857102644@163.com;hdfzj@zjut.edu.cn
作者简介: 熊伟亮(1999—),男,博士生,从事模型预测控制的研究. orcid.org/0000-0002-2476-8941. E-mail: 17857102644@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
熊伟亮
何德峰
王秀丽
周丹

引用本文:

熊伟亮,何德峰,王秀丽,周丹. 基于高斯回归学习的场景优化鲁棒预测控制[J]. 浙江大学学报(工学版), 2023, 57(4): 693-701.

Wei-liang XIONG,De-feng HE,Xiu-li WANG,Dan ZHOU. Scenario optimization robust predictive control via Gaussian regression learning. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 693-701.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.006        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/693

图 1  GP拟合结果及双侧0.8置信区间
Pp(M) pc ts/ms
算法1 算法2
0.1(19) 0.800 1 0.636 8 10.95
0.3(30) 0.862 8 0.720 1 14.11
0.5(48) 0.905 0 0.733 6 19.90
0.7(88) 0.944 3 0.808 1 29.63
0.9(285) 0.982 4 0.934 1 90.51
表 1  10 000次蒙特卡洛模拟的统计结果
图 2  初始状态的一步可达集合与状态约束集合
图 3  算法1在Pp = 0.1时的10 000条蒙特卡洛状态轨迹
图 4  算法1在Pp = 0.1时10 000条蒙特卡洛输入轨迹
k ap /(m·s?2)
减速 加速
1 ?0.807 5 0.807 5
2 ?1.684 5 1.684 6
3 ?2.500 0 2.500 0
4 ?2.500 0 2.500 0
5 ?1.684 5 1.684 6
6 ?0.807 5 0.807 5
7 ?0.331 2 0.331 2
8 ?0.127 1 0.127 1
≥9 0 0
表 2  2种工况下的理想加速度数据
图 5  减速工况下的加速度对比图
图 6  减速工况下的速度对比图
图 7  减速工况下的间距误差对比图
图 8  减速工况下的状态轨迹对比图
图 9  加速工况下的加速度对比图
图 10  加速工况下的速度对比图
图 11  加速工况下的间距误差对比图
图 12  加速工况下的状态轨迹对比图
1 SCHWENZER M, AY M, BERGS T, et al Review on model predictive control: an engineering perspective[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117 (5): 1327- 1349
2 MUNOZ-CARPINTERO D, CANNON M Convergence of stochastic nonlinear systems and implications for stochastic model-predictive control[J]. IEEE Transactions on Automatic Control, 2020, 66 (6): 2832- 2839
3 MAYNE D Q Model predictive control: recent developments and future promise[J]. Automatica, 2014, 50 (12): 2967- 2986
doi: 10.1016/j.automatica.2014.10.128
4 MAYNE D Robust and stochastic model predictive control: are we going in the right direction[J]. Annual Reviews in Control, 2016, 41: 184- 192
doi: 10.1016/j.arcontrol.2016.04.006
5 RAWLINGS J B, MAYNE D Q, DIEHL M. Model predictive control: theory, computation, and design [M]. Madison, WI: Nob Hill, 2017.
6 HEYDARI R, FARROKHI M Robust tube-based model predictive control of LPV systems subject to adjustable additive disturbance set[J]. Automatica, 2021, 129: 109672
doi: 10.1016/j.automatica.2021.109672
7 HANEMA J, LAZAR M, TÓTH R Heterogeneously parameterized tube model predictive control for LPV systems[J]. Automatica, 2020, 111: 108622
doi: 10.1016/j.automatica.2019.108622
8 ZHANG K, LIU C, SHI Y Self-triggered adaptive model predictive control of constrained nonlinear systems: a min–max approach[J]. Automatica, 2022, 142: 110424
doi: 10.1016/j.automatica.2022.110424
9 MESBAH A Stochastic model predictive control: an overview and perspectives for future research[J]. IEEE Control Systems Magazine, 2016, 36 (6): 30- 44
doi: 10.1109/MCS.2016.2602087
10 MUÑOZ-CARPINTERO D, HU G, SPANOS C J Stochastic model predictive control with adaptive constraint tightening for non-conservative chance constraints satisfaction[J]. Automatica, 2018, 96: 32- 39
doi: 10.1016/j.automatica.2018.06.026
11 ZIDEK R A E, KOLMANOVSKY I V, BEMPORAD A Model predictive control for drift counteraction of stochastic constrained linear systems[J]. Automatica, 2021, 123: 109304
doi: 10.1016/j.automatica.2020.109304
12 DHAR A, BHASIN S Indirect adaptive MPC for discrete-time LTI systems with parametric uncertainties[J]. IEEE Transactions on Automatic Control, 2021, 66 (11): 5498- 5505
doi: 10.1109/TAC.2021.3050446
13 CALAFIORE G C, FAGIANO L Robust model predictive control via scenario optimization[J]. IEEE Transactions on Automatic Control, 2012, 58 (1): 219- 224
14 CALAFIORE G C, FAGIANO L Stochastic model predictive control of LPV systems via scenario optimization[J]. Automatica, 2013, 49 (6): 1861- 1866
doi: 10.1016/j.automatica.2013.02.060
15 LORENZEN M, DABBENE F, TEMPO R, et al Stochastic MPC with offline uncertainty sampling[J]. Automatica, 2017, 81: 176- 183
doi: 10.1016/j.automatica.2017.03.031
16 SCHILDBACH G, FAGIANO L, MORARI M Randomized solutions to convex programs with multiple chance constraints[J]. SIAM Journal on Optimization, 2013, 23 (4): 2479- 2501
doi: 10.1137/120878719
17 ROSOLIA U, ZHANG X, BORRELLI F Data-driven predictive control for autonomous systems[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1 (1): 259- 286
doi: 10.1146/annurev-control-060117-105215
18 CAMPI M C, GARATTI S The exact feasibility of randomized solutions of uncertain convex programs[J]. SIAM Journal on Optimization, 2008, 19 (3): 1211- 1230
doi: 10.1137/07069821X
19 HEWING L, WABERSICH K P, MENNER M, et al Learning-based model predictive control: toward safe learning in control[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3 (1): 269- 296
doi: 10.1146/annurev-control-090419-075625
20 HEWING L, KABZAN J, ZEILINGER M N Cautious model predictive control using Gaussian process regression[J]. IEEE Transactions on Control Systems Technology, 2019, 28 (6): 2736- 2743
21 KLENSKE E D, ZEILINGER M N, SCHÖLKOPF B, et al Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology, 2015, 24 (1): 110- 121
22 TERZI E, FARINA M, FAGIANO L, et al Robust multi-rate predictive control using multi-step prediction models learned from data[J]. Automatica, 2022, 136: 109852
doi: 10.1016/j.automatica.2021.109852
23 KÖHLER J, KÖTTING P, SOLOPERTO R, et al A robust adaptive model predictive control framework for nonlinear uncertain systems[J]. International Journal of Robust and Nonlinear Control, 2021, 31 (18): 8725- 8749
doi: 10.1002/rnc.5147
24 MANZANO J M, DE LA PENA D M, CALLIESS J P, et al Componentwise hölder inference for robust learning-based MPC[J]. IEEE Transactions on Automatic Control, 2021, 66 (11): 5577- 5583
doi: 10.1109/TAC.2021.3056356
25 WILLIAMS C K I, RASMUSSEN C E. Gaussian processes for machine learning [M]. Cambridge: MIT press, 2006.
26 LI F, LI H, HE Y Adaptive stochastic model predictive control of linear systems using Gaussian process regression[J]. IET Control Theory and Applications, 2021, 15 (5): 683- 693
doi: 10.1049/cth2.12070
27 GRANCHAROVA A, KOCIJAN J, JOHANSEN T A Explicit stochastic predictive control of combustion plants based on Gaussian process models[J]. Automatica, 2008, 44 (6): 1621- 1631
doi: 10.1016/j.automatica.2008.04.002
28 WANG Y, OCAMPO‐MARTINEZ C, PUIG V Stochastic model predictive control based on Gaussian processes applied to drinking water networks[J]. IET Control Theory and Applications, 2016, 10 (8): 947- 955
doi: 10.1049/iet-cta.2015.0657
29 BISHOP C M, NASRABADI N M. Pattern recognition and machine learning [M]. New York: Springer, 2006.
30 CLOETE J B, STANDER T, WILKE D N Parametric circuit fault diagnosis through oscillation-based testing in analogue circuits: statistical and deep learning approaches[J]. IEEE Access, 2022, 10: 15671- 15680
doi: 10.1109/ACCESS.2022.3149324
31 WANG J, JIANG C, HAN Z, et al Internet of vehicles: sensing-aided transportation information collection and diffusion[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (5): 3813- 3825
doi: 10.1109/TVT.2018.2796443
32 ALI I, AHMEDY I, GANI A, et al Data collection in studies on Internet of things (IoT), wireless sensor networks (WSNs), and sensor cloud (SC): similarities and differences[J]. IEEE Access, 2022, 10: 33909- 33931
doi: 10.1109/ACCESS.2022.3161929
33 KOUVARITAKIS B, CANNON M. Model predictive control: classical, robust and stochastic [M]. Switzerland: Springer, 2016.
[1] 张心怡, 杨家强, 张晓军. 基于机会约束的含多风电场动态经济调度[J]. 浙江大学学报(工学版), 2017, 51(5): 976-983.