自动化技术、计算机技术 |
|
|
|
|
基于高斯回归学习的场景优化鲁棒预测控制 |
熊伟亮( ),何德峰*( ),王秀丽,周丹 |
浙江工业大学 信息工程学院,浙江 杭州 310012 |
|
Scenario optimization robust predictive control via Gaussian regression learning |
Wei-liang XIONG( ),De-feng HE*( ),Xiu-li WANG,Dan ZHOU |
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310012, China |
引用本文:
熊伟亮,何德峰,王秀丽,周丹. 基于高斯回归学习的场景优化鲁棒预测控制[J]. 浙江大学学报(工学版), 2023, 57(4): 693-701.
Wei-liang XIONG,De-feng HE,Xiu-li WANG,Dan ZHOU. Scenario optimization robust predictive control via Gaussian regression learning. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 693-701.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.006
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I4/693
|
1 |
SCHWENZER M, AY M, BERGS T, et al Review on model predictive control: an engineering perspective[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117 (5): 1327- 1349
|
2 |
MUNOZ-CARPINTERO D, CANNON M Convergence of stochastic nonlinear systems and implications for stochastic model-predictive control[J]. IEEE Transactions on Automatic Control, 2020, 66 (6): 2832- 2839
|
3 |
MAYNE D Q Model predictive control: recent developments and future promise[J]. Automatica, 2014, 50 (12): 2967- 2986
doi: 10.1016/j.automatica.2014.10.128
|
4 |
MAYNE D Robust and stochastic model predictive control: are we going in the right direction[J]. Annual Reviews in Control, 2016, 41: 184- 192
doi: 10.1016/j.arcontrol.2016.04.006
|
5 |
RAWLINGS J B, MAYNE D Q, DIEHL M. Model predictive control: theory, computation, and design [M]. Madison, WI: Nob Hill, 2017.
|
6 |
HEYDARI R, FARROKHI M Robust tube-based model predictive control of LPV systems subject to adjustable additive disturbance set[J]. Automatica, 2021, 129: 109672
doi: 10.1016/j.automatica.2021.109672
|
7 |
HANEMA J, LAZAR M, TÓTH R Heterogeneously parameterized tube model predictive control for LPV systems[J]. Automatica, 2020, 111: 108622
doi: 10.1016/j.automatica.2019.108622
|
8 |
ZHANG K, LIU C, SHI Y Self-triggered adaptive model predictive control of constrained nonlinear systems: a min–max approach[J]. Automatica, 2022, 142: 110424
doi: 10.1016/j.automatica.2022.110424
|
9 |
MESBAH A Stochastic model predictive control: an overview and perspectives for future research[J]. IEEE Control Systems Magazine, 2016, 36 (6): 30- 44
doi: 10.1109/MCS.2016.2602087
|
10 |
MUÑOZ-CARPINTERO D, HU G, SPANOS C J Stochastic model predictive control with adaptive constraint tightening for non-conservative chance constraints satisfaction[J]. Automatica, 2018, 96: 32- 39
doi: 10.1016/j.automatica.2018.06.026
|
11 |
ZIDEK R A E, KOLMANOVSKY I V, BEMPORAD A Model predictive control for drift counteraction of stochastic constrained linear systems[J]. Automatica, 2021, 123: 109304
doi: 10.1016/j.automatica.2020.109304
|
12 |
DHAR A, BHASIN S Indirect adaptive MPC for discrete-time LTI systems with parametric uncertainties[J]. IEEE Transactions on Automatic Control, 2021, 66 (11): 5498- 5505
doi: 10.1109/TAC.2021.3050446
|
13 |
CALAFIORE G C, FAGIANO L Robust model predictive control via scenario optimization[J]. IEEE Transactions on Automatic Control, 2012, 58 (1): 219- 224
|
14 |
CALAFIORE G C, FAGIANO L Stochastic model predictive control of LPV systems via scenario optimization[J]. Automatica, 2013, 49 (6): 1861- 1866
doi: 10.1016/j.automatica.2013.02.060
|
15 |
LORENZEN M, DABBENE F, TEMPO R, et al Stochastic MPC with offline uncertainty sampling[J]. Automatica, 2017, 81: 176- 183
doi: 10.1016/j.automatica.2017.03.031
|
16 |
SCHILDBACH G, FAGIANO L, MORARI M Randomized solutions to convex programs with multiple chance constraints[J]. SIAM Journal on Optimization, 2013, 23 (4): 2479- 2501
doi: 10.1137/120878719
|
17 |
ROSOLIA U, ZHANG X, BORRELLI F Data-driven predictive control for autonomous systems[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1 (1): 259- 286
doi: 10.1146/annurev-control-060117-105215
|
18 |
CAMPI M C, GARATTI S The exact feasibility of randomized solutions of uncertain convex programs[J]. SIAM Journal on Optimization, 2008, 19 (3): 1211- 1230
doi: 10.1137/07069821X
|
19 |
HEWING L, WABERSICH K P, MENNER M, et al Learning-based model predictive control: toward safe learning in control[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3 (1): 269- 296
doi: 10.1146/annurev-control-090419-075625
|
20 |
HEWING L, KABZAN J, ZEILINGER M N Cautious model predictive control using Gaussian process regression[J]. IEEE Transactions on Control Systems Technology, 2019, 28 (6): 2736- 2743
|
21 |
KLENSKE E D, ZEILINGER M N, SCHÖLKOPF B, et al Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology, 2015, 24 (1): 110- 121
|
22 |
TERZI E, FARINA M, FAGIANO L, et al Robust multi-rate predictive control using multi-step prediction models learned from data[J]. Automatica, 2022, 136: 109852
doi: 10.1016/j.automatica.2021.109852
|
23 |
KÖHLER J, KÖTTING P, SOLOPERTO R, et al A robust adaptive model predictive control framework for nonlinear uncertain systems[J]. International Journal of Robust and Nonlinear Control, 2021, 31 (18): 8725- 8749
doi: 10.1002/rnc.5147
|
24 |
MANZANO J M, DE LA PENA D M, CALLIESS J P, et al Componentwise hölder inference for robust learning-based MPC[J]. IEEE Transactions on Automatic Control, 2021, 66 (11): 5577- 5583
doi: 10.1109/TAC.2021.3056356
|
25 |
WILLIAMS C K I, RASMUSSEN C E. Gaussian processes for machine learning [M]. Cambridge: MIT press, 2006.
|
26 |
LI F, LI H, HE Y Adaptive stochastic model predictive control of linear systems using Gaussian process regression[J]. IET Control Theory and Applications, 2021, 15 (5): 683- 693
doi: 10.1049/cth2.12070
|
27 |
GRANCHAROVA A, KOCIJAN J, JOHANSEN T A Explicit stochastic predictive control of combustion plants based on Gaussian process models[J]. Automatica, 2008, 44 (6): 1621- 1631
doi: 10.1016/j.automatica.2008.04.002
|
28 |
WANG Y, OCAMPO‐MARTINEZ C, PUIG V Stochastic model predictive control based on Gaussian processes applied to drinking water networks[J]. IET Control Theory and Applications, 2016, 10 (8): 947- 955
doi: 10.1049/iet-cta.2015.0657
|
29 |
BISHOP C M, NASRABADI N M. Pattern recognition and machine learning [M]. New York: Springer, 2006.
|
30 |
CLOETE J B, STANDER T, WILKE D N Parametric circuit fault diagnosis through oscillation-based testing in analogue circuits: statistical and deep learning approaches[J]. IEEE Access, 2022, 10: 15671- 15680
doi: 10.1109/ACCESS.2022.3149324
|
31 |
WANG J, JIANG C, HAN Z, et al Internet of vehicles: sensing-aided transportation information collection and diffusion[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (5): 3813- 3825
doi: 10.1109/TVT.2018.2796443
|
32 |
ALI I, AHMEDY I, GANI A, et al Data collection in studies on Internet of things (IoT), wireless sensor networks (WSNs), and sensor cloud (SC): similarities and differences[J]. IEEE Access, 2022, 10: 33909- 33931
doi: 10.1109/ACCESS.2022.3161929
|
33 |
KOUVARITAKIS B, CANNON M. Model predictive control: classical, robust and stochastic [M]. Switzerland: Springer, 2016.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|