计算机技术 |
|
|
|
|
融合用户感知和多因素的兴趣点推荐 |
卢巧杰1,2( ),王楠1,2,*( ),李金宝3,4,李坤1,2 |
1. 黑龙江大学 计算机科学技术学院,黑龙江 哈尔滨 150080 2. 黑龙江大学 数据库与并行计算重点实验室,黑龙江 哈尔滨 150080 3. 齐鲁工业大学 山东省人工智能研究院,山东 济南 250014 4. 齐鲁工业大学 数学与统计学院,山东 济南 250353 |
|
Point-of-interest recommendation integrating user perception and multi-factor |
Qiao-jie LU1,2( ),Nan WANG1,2,*( ),Jin-bao LI3,4,Kun LI1,2 |
1. College of Computer Science and Technology, Heilongjiang University, Harbin 150080, China 2. Key Laboratory of Database and Parallel Computing, Heilongjiang University, Harbin 150080, China 3. Shandong Artificial Intelligence Institute, Qilu University of Technology, Jinan 250014, China 4. School of Mathematics and Statistics, Qilu University of Technology, Jinan 250353, China |
引用本文:
卢巧杰,王楠,李金宝,李坤. 融合用户感知和多因素的兴趣点推荐[J]. 浙江大学学报(工学版), 2023, 57(2): 310-319.
Qiao-jie LU,Nan WANG,Jin-bao LI,Kun LI. Point-of-interest recommendation integrating user perception and multi-factor. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 310-319.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.011
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I2/310
|
1 |
HU Y, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]// 8th IEEE International Conference on Data Mining. Pisa: IEEE, 2008: 263-272.
|
2 |
LIU K, ZHENG W, XIAO Y, et al. POI recommendation algorithm based on region transfer collaborative filtering [C]// IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Hangzhou: IEEE, 2022: 903-907.
|
3 |
MNIH A, SALAKHUTDINOV R. Probabilistic matrix factorization[C]// Advances in Neural Information Processing Systems. Vancouver: NIPS, 2007: 1257-1264.
|
4 |
HAN P, LI Z, LIU Y, et al. Contextualized point-of-interest recommendation[C]// International Joint Conferences on Artificial Intelligence. Yokohama: IJCAI, 2020: 2484-2490.
|
5 |
CHANG L, CHEN W, HUANG J, et al Exploiting multi-attention network with contextual influence for point-of-interest recommendation[J]. Applied Intelligence, 2021, 51 (4): 1904- 1917
doi: 10.1007/s10489-020-01868-0
|
6 |
RAHMANI H A, ALIANNEJADI M, BARATCHI M, et al A systematic analysis on the impact of contextual information on point-of-interest recommendation[J]. ACM Transactions on Information Systems (TOIS), 2022, 40 (4): 1- 35
|
7 |
GUO L, WEN Y, LIU F Location perspective-based neighborhood-aware POI recommendation in location-based social networks[J]. Soft Computing, 2019, 23 (22): 11935- 11945
doi: 10.1007/s00500-018-03748-9
|
8 |
WANG H, SHEN H, OUYANG W, et al. Exploiting POI-specific geographical influence for point-of-interest recommendation [C]// International Joint Conferences on Artificial Intelligence. Stockholm: IJCAI, 2018: 3877-3883.
|
9 |
LI X, CONG G, LI X L, et al. Rank-geofm: a ranking based geographical factorization method for point of interest recommendation[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiago: ACM, 2015: 433-442.
|
10 |
JIAO X, XIAO Y, ZHENG W, et al A novel next new point-of-interest recommendation system based on simulated user travel decision-making process[J]. Future Generation Computer Systems, 2019, 100: 982- 993
doi: 10.1016/j.future.2019.05.065
|
11 |
MANOTUMRUKSA J, MACDONALD C, OUNIS I. A contextual attention recurrent architecture for context- aware venue recommendation [C]// The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. Ann Arbor : ACM, 2018: 555-564.
|
12 |
ZHANG Z, LIU Y, ZHANG Z, et al Fused matrix factorization with multi-tag, social and geographical influences for POI recommendation[J]. World Wide Web, 2019, 22 (3): 1135- 1150
doi: 10.1007/s11280-018-0579-9
|
13 |
ZHANG J D, CHOW C Y. Geosoca: exploiting geographical, social and categorical correlations for point-of-interest recommendations[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiago: ACM, 2015: 443-452.
|
14 |
CAI Z, YUAN G, QIAO S, et al FG-CF: friends-aware graph collaborative filtering for POI recommendation[J]. Neurocomputing, 2022, 488: 107- 119
doi: 10.1016/j.neucom.2022.02.070
|
15 |
JOHNSON C C Logistic matrix factorization for implicit feedback data[J]. Advances in Neural Information Processing Systems, 2014, 27 (78): 1- 9
|
16 |
RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. Raleigh: ACM, 2010: 811-820.
|
17 |
SMIRNOVA E, VASILE F. Contextual sequence modeling for recommendation with recurrent neural networks [C]// Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems. Como: ACM, 2017: 2-9.
|
18 |
WANG X, LIU Y, ZHOU X, et al A point-of-interest recommendation method exploiting sequential, category and geographical influence[J]. ISPRS International Journal of Geo-Information, 2022, 11 (2): 80
doi: 10.3390/ijgi11020080
|
19 |
ZHU H, ZHAO P, LI Z, et al. Exploiting implicit social relationship for point-of-interest recommendation[C]// Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data. Macau: Springer, 2018: 280-297.
|
20 |
RENDLE S. Item recommendation from implicit feedback [M]// Recommender systems handbook. New York: Springer, 2022: 143-171.
|
21 |
WANG H, LI L, CHE L, et al Geospatial least squares support vector regression fused with spatial weight matrix[J]. ISPRS International Journal of Geo-Information, 2021, 10 (11): 714
doi: 10.3390/ijgi10110714
|
22 |
CHENG C, YANG H, KING I, et al. Fused matrix factorization with geographical and social influence in location-based social networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Toronto: AAAI, 2012: 17-23.
|
23 |
DACREMA M F, CREMONESI P, JANNACH D. Are we really making much progress? A worrying analysis of recent neural recommendation approaches[C]// Proceedings of the 13th ACM Conference on Recommender Systems. Copenhagen: ACM, 2019: 101-109.
|
24 |
STEPAN T, MORAWSKI J M, DICK S, et al Incorporating spatial, temporal, and social context in recommendations for location-based social networks[J]. IEEE Transactions on Computational Social Systems, 2016, 3 (4): 164- 175
doi: 10.1109/TCSS.2016.2631473
|
25 |
ZHANG J D, CHOW C Y. iGSLR: personalized geo-social location recommendation: a kernel density estimation approach [C]// Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Orlando: ACM, 2013: 334-343.
|
26 |
HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Switzerland: ACM, 2017: 173-182.
|
27 |
WANG H, TERROVITIS M, MAMOULIS N. Location recommendation in location-based social networks using user check-in data [C]// Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Orlando: ACM, 2013: 374-383.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|