Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 122-132    DOI: 10.3785/j.issn.1008-973X.2023.01.013
土木工程     
剪力墙竖向连接软钢阻尼器滞回性能试验研究
肖红梅(),朱立猛*(),张春巍
青岛理工大学 土木工程学院,山东 青岛 266520
Experimentalrimental research on hysteric performance of mild steel damper for shear wall vertical connection
Hong-mei XIAO(),Li-meng ZHU*(),Chun-wei ZHANG
School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
 全文: PDF(3041 KB)   HTML
摘要:

提出应用于剪力墙竖向韧性连接体的易拆装的拉压耗能软钢阻尼器. 为了研究拉压荷载作用下该阻尼器的滞回性能,基于杠杆原理,设计制作能放大加载位移的高承载销轴-钢梁加载装置和3对不同耗能肢形状的试件,模拟阻尼器的螺栓连接边界和拉压往复受力过程. 将阻尼器试件同条件依次安装并开展拟静力循环往复加载试验,研究试件的破坏模式、 强度及变形能力、耗能特性及螺栓连接的可靠性,获得试件的滞回曲线、骨架曲线、刚度退化曲线、承载力及延性系数等. 对阻尼器的耗能承载能力进行评价分析,研究耗能肢型体参数对力学性能的影响. 建立有限元模型,模拟阻尼器的失效行为. 结果表明,阻尼器以耗能肢屈曲为典型破坏模式,Z型耗能肢阻尼器与其他2种耗能肢形状的阻尼器相比,具备更好的防屈曲性能和耗能能力,能够发挥低屈服点钢材的力学性能,震损后可以快速更换.

关键词: 韧性装配式剪力墙竖向连接结构抗震韧性软钢阻尼器损伤可控可更换功能    
Abstract:

A tension-compression type demountable mild steel damper for shear wall vertical connections was proposed and could highly increase this structure’s energy dissipation ability. A loading structure with high strength and three pairs of damper specimens with different limb geometrical shapes were designed based on the lever principle in order to analyze the hysteric behavior of this tension-compression damper. The structure can enlarge the displacement load. The bolt connection boundary condition and the tension-compression cyclic loading process were simulated. These specimens were respectively installed on the loading structure and tested in the same condition to analyze their failure modes, strength, ductility, energy dissipation ability and the reliability of the bolt connection. Their cyclic load-displace curves, skeleton curves, stiffness degradation curves, strength and ductility coefficients were utilized to evaluate their bearing and energy dissipating abilities. The influence of the limb geometrical shape on their mechanical behavior was analyzed. The finite element model was constructed to simulate the dampers’ failure behavior. The buckling of damper limbs was analyzed as the typical failure mode. The Z-type mild steel damper exhibits higher buckling-restrained and energy dissipating ability than that of the other two types, make full use of the material performance of low yield point steel, and could be rapidly replaced after being damaged.

Key words: resilient prefabricated shear wall    vertical connection structure    seismic resilience    mild steel damper    damage-control ability    replaceability
收稿日期: 2022-02-24 出版日期: 2023-01-17
CLC:  TU 352  
基金资助: 国家重点研发计划资助项目(2019YFE0112400);山东省重点研发计划(重大科技创新工程)资助项目(2021CXGC011204)
通讯作者: 朱立猛     E-mail: xiaohongmei@qut.edu.cn;zhulimeng@qut.edu.cn
作者简介: 肖红梅(1983—),女,高级实验师,从事装配结构减隔震的研究. orcid.org/ 0000-0002-3982-5320. E-mail: xiaohongmei@qut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖红梅
朱立猛
张春巍

引用本文:

肖红梅,朱立猛,张春巍. 剪力墙竖向连接软钢阻尼器滞回性能试验研究[J]. 浙江大学学报(工学版), 2023, 57(1): 122-132.

Hong-mei XIAO,Li-meng ZHU,Chun-wei ZHANG. Experimentalrimental research on hysteric performance of mild steel damper for shear wall vertical connection. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 122-132.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.013        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/122

图 1  剪力墙竖向连接体形变机理及简图
图 2  软钢阻尼器试件的几何尺寸
分组 试件 编号 加载位置 耗能 肢型 Lh/mm Lb/mm n
1 ZN01-T 顶部 I型 50 15 7
1 ZN01-B 底部 I型 50 15 3
2 ZN02-T 顶部 Z型 50 15 3
2 ZN02-B 底部 Z型 50 15 3
3 ZN03-T 顶部 斜柱型 50 15 3
3 ZN03-B 底部 斜柱型 50 15 3
表 1  软钢阻尼器试件的几何参数
试件 t /mm fy/MPa fu/MPa fu/fy Es/MPa ζ /%
LP1 10 122.5 265.1 2.14 211960 51.2
LP2 10 127.7 268.7 2.10 227331 49.8
LP3 10 126.5 266.3 2.11 211049 49.1
均值 10 125.6 266.7 2.12 216870 50.0
表 2  低屈服点软钢拉伸性能的试验数据
图 3  阻尼器滞回加载的试验系统
图 4  阻尼器力-位移曲线的计算简图
图 5  试验作动器的加载制度
图 6  测点布置(顶部加载)
图 7  骨架曲线
图 8  阻尼器的破坏模式
图 9  破坏后耗能肢平面外的屈曲位移
图 10  不同型体阻尼器试件的轴力-位移滞回曲线
图 11  刚度退化曲线
图 12  积累耗能曲线
图 13  耗能系数
试件编号 加载方向 ${\varDelta _{\rm{y}}}/{\text{mm}}$ ${N_{\rm{y}}}/{\text{kN}}$ ${\varDelta _{\max }}/{\text{mm}}$ ${N_{\max }}/{\text{kN}}$ ${\varDelta _{\rm{u}}}/{\text{mm} }$
ZN01-T 1.41 88.81 5.63 102.69 9.04
ZN01-T ?0.39 ?90.6 ?3.61 ?107.63 ?5.97
ZN02-T 1.59 86.49 5.65 108.49 10.20
ZN02-T ?0.57 ?89.05 ?3.89 ?107.67 ?8.07
ZN03-T 1.50 88.47 4.97 104.65 9.89
ZN03-T ?0.46 ?87.46 ?2.96 ?110.94 ?6.65
ZN02-B 1.64 88.34 4.51 106.47 10.03
ZN02-B ?0.52 ?89.54 ?3.08 ?106.64 ?8.30
表 3  试件轴向荷载及位移特征值
试件编号 $ {N_{\rm{y}}} $ /kN $ {N_{\max }} $ /kN ${ { {N_{\max } } }/ { {N_{\text{y} } } } }$
单个 同型 单个 同型 单个 同型
ZN01-T 89.70 89.70 105.16 105.16 1.17 1.17
ZN02-T 87.77 88.36 108.10 107.33 1.23 1.22
ZN02-B 88.94 88.36 106.56 107.33 1.20 1.22
ZN03-T 86.35 87.97 107.80 107.80 1.25 1.22
表 4  试件承载力特征值均值
试件编号 ${\varDelta _{\rm{y}}}/{\text{mm}}$ ${\varDelta _{\max }}/{\text{mm}}$ ${\varDelta _{\rm{u}}}/{\text{mm}}$ $\;\mu $
同个 同型
ZN01-T 0.90 4.62 7.51 8.34 8.34
ZN02-T 1.08 4.77 9.14 8.46 8.52
ZN02-B 1.07 3.80 9.16 8.57 8.52
ZN03-T 0.98 3.96 8.25 8.45 8.45
表 5  试件的位移特征值均值
图 14  阻尼器试件加载的有限元模型
图 15  阻尼器试件试验骨架曲线与模拟单调加载曲线的对比
图 16  阻尼器试件失效模式的模拟结果
1 薛艳, 刘杰, 姜祥华 全球及主要构造带大震活动状态研究[J]. 地球物理学报, 2021, 64 (12): 4425- 4436
XUE Yan, LIU Jie, JIANG Xiang-hua Process and trend of great earthquakes in the globe and main zones[J]. Chinese Journal of Geophysics, 2021, 64 (12): 4425- 4436
2 詹世革, 张攀峰 国家自然科学基金力学学科发展现状和“十三五”发展战略[J]. 力学学报, 2017, 49 (2): 478- 483
ZHAN Shi-ge, ZHANG Pan-feng Review of NSFC projects on mechanics and the 13th five-year development strategy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49 (2): 478- 483
3 聂建国 我国结构工程的未来——高性能结构工程[J]. 土木工程学报, 2016, 49 (9): 1- 8
NIE Jian-guo The future of structural engineering in China: high-performance structural engineering[J]. China Civil Engineering Journal, 2016, 49 (9): 1- 8
4 吕西林, 武大洋, 周颖 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40 (2): 1- 15
LV Xi-lin, WU Da-yang, ZHOU Ying State-of-the-art of earthquake resilient structures[J]. Journal of Building Structures, 2019, 40 (2): 1- 15
5 周颖, 顾安琪 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40 (3): 118- 126
ZHOU Ying, GU An-qi Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2019, 40 (3): 118- 126
6 苗欣蔚, 黄炜, 胡高兴, 等 水平缝螺栓连接的全装配式复合墙体受力性能试验研究[J]. 湖南大学学报: 自然科学版, 2021, 48 (5): 19- 28
MIAO Xin-wei, HUANG Wei, HU Gao-xing, et al Experimental study on mechanical behavior of fully assembled composite wall with bolted connection on horizontal joints[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (5): 19- 28
7 徐咏, 熊峰, 陈江 装配式剪力墙竖向焊接节点抗剪性能[J]. 湖南大学学报: 自然科学版, 2018, 45 (5): 53- 61
XU Yong, XIONG Feng, CHEN Jiang Shear behavior of vertical welded connection in precast shear wall[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (5): 53- 61
8 徐龙河, 陈曦, 肖水晶. 内置碟簧自复位钢筋混凝土剪力墙拟静力试验及损伤分析[J]. 建筑结构学报, 2021, 42(7): 56-64.
XU Long-he, CHEN Xi, XIAO Shui-jing. Quasi-static test and damage analysis on self-centering reinforced concrete shear wall with disc spring devices [J]. Journal of Building Structures, 2021, 42(7): 56-64.
9 ZHANG Y, XU L H Cyclic response of a self-centering RC wall with tension-compression-coupled disc spring devices[J]. Engineering Structures, 2022, 250: 113404
doi: 10.1016/j.engstruct.2021.113404
10 王威, 赵昊田, 权超超, 等 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1407- 1418
WANG Wei, ZHAO Hao-tian, QUAN Chao-chao, et al Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1407- 1418
11 王威, 宋鸿来, 权超超, 等 横波钢板混凝土剪力墙震损修复及抗侧刚度分析[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1694- 1704
WANG Wei, SONG Hong-lai, QUAN Chao-chao, et al Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1694- 1704
12 吕西林, 朱奇云 软钢阻尼器加固震损再生混凝土框架振动台试验[J]. 同济大学学报: 自然科学版, 2019, 47 (7): 914- 924
LV Xi-lin, ZHU Qi-yun Shaking table test of earthquake-damaged recycled aggregate concrete frame retrofitted with steel dampers[J]. Journal of Tongji University: Natural Science, 2019, 47 (7): 914- 924
13 BEDRINANA L A, TANI M, NISHIYAMA M Deformation and cyclic buckling capacity of external replaceable hysteretic dampers for unbonded post-tensioned precast concrete walls[J]. Engineering Structures, 2021, 235: 112045
doi: 10.1016/j.engstruct.2021.112045
14 LI Y D, GENG F F, DING Y L, et al Influence of mild steel damper design parameters on energy dissipation performance of low-damage self-centering precast concrete frame connections[J]. Soil Dynamics and Earthquake Engineering, 2021, 144: 106696
doi: 10.1016/j.soildyn.2021.106696
[1] 王维,高尚信,李爱群,王星星. 基于非对称模型的碟簧隔震单自由度体系地震响应[J]. 浙江大学学报(工学版), 2020, 54(6): 1095-1105.
[2] 刘帅,潘超,周志光. 耗能联肢墙体系的减震性能及参数影响[J]. 浙江大学学报(工学版), 2019, 53(3): 492-502.
[3] 钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.
[4] 龚顺风, 夏谦, 金伟良. 近爆作用下钢筋混凝土柱的损伤机理研究[J]. J4, 2011, 45(8): 1405-1410.
[5] 章永乐,蒋建群,刘加进,王振宇. 框架结构地震损伤评估与抗震设计[J]. J4, 2011, 45(7): 1294-1300.
[6] 肖南, 容里, 董石麟. 双层球面网壳振动主动控制作动器位置优化[J]. J4, 2010, 44(5): 942-949.