Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (4): 718-726    DOI: 10.3785/j.issn.1008-973X.2022.04.011
计算机技术、信息工程     
基于改进型相似性建模的光伏积灰监测方法
王中豪1(),徐正国1,*(),章筠2
1. 浙江大学 控制科学与工程学院,浙江 杭州 310027
2. 上海电气分布式能源科技有限公司,上海 200070
Improved similarity-based modeling approach for dust deposition monitoring of photovoltaic modules
Zhong-hao WANG1(),Zheng-guo XU1,*(),Yun ZHANG2
1. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
2. Shanghai Electric Distributed Energy Technology Limited Company, Shanghai 200070, China
 全文: PDF(1572 KB)   HTML
摘要:

针对光伏系统积灰程度监测的问题,考虑到基于理论公式的方法误差较大,基于计算机视觉的方法成本较高,传统机器学习方法对训练数据有较高需求,提出弱监督的数据驱动方法:改进型相似性建模(SBM)方法. 在原始的SBM方法的基础上,对参数选取、状态矩阵构建与更新、相似性算子设计进行针对性的改进,使得该方法更加适用于光伏系统的应用,提高准确性与响应速度. 利用真实的积灰实验数据,对改进型SBM方法与其他5种方法的积灰诊断效果进行对比,包括基于理论公式的方法、前馈神经网络(FNN)、支持向量回归(SVR)、随机森林(RF)和原始SBM方法. 结果表明,改进型SBM方法可以以可接受的响应速度劣势实现最佳的积灰程度监测准确性.

关键词: 光伏系统积灰系统状态监测对比实验相似性建模(SBM)    
Abstract:

A weakly-supervised data-driven approach, improved similarity-based modeling (SBM) approach, was proposed aiming at the problem of dust deposition monitoring of photovoltaic modules. The great error of theoretical formulas approaches, the high cost of computer vision approaches and the large requirements for training data of classical machine learning approaches were considered. Improvements in the steps of parameters selection, state matrix construction and update and similarity operator were made based on the original SBM in order to adapt the approach to the PV systems monitoring and increase the estimated accuracy and response rate. The improved SBM and five other approaches, theoretical formulas, feedforward neural network (FNN), support vector regression (SVR), random forest (RF), and the original SBM were employed for the dust estimation, and their performances were evaluated based on the real data from a dust deposition experiment. Results show that the improved SBM has the best accuracy at the cost of acceptable response time increase.

Key words: photovoltaic system    dust deposition    system condition monitoring    comparative experiment    similarity-based modeling (SBM)
收稿日期: 2021-05-10 出版日期: 2022-04-24
CLC:  TM 615  
基金资助: 国家自然科学基金资助项目(61751307,61973269)
通讯作者: 徐正国     E-mail: 11632028@zju.edu.cn;xzg@zju.edu.cn
作者简介: 王中豪(1993—),男,博士生,从事光伏系统运维优化的研究. orcid.org/0000-0001-5317-2322. E-mail: 11632028@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王中豪
徐正国
章筠

引用本文:

王中豪,徐正国,章筠. 基于改进型相似性建模的光伏积灰监测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 718-726.

Zhong-hao WANG,Zheng-guo XU,Yun ZHANG. Improved similarity-based modeling approach for dust deposition monitoring of photovoltaic modules. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 718-726.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.011        https://www.zjujournals.com/eng/CN/Y2022/V56/I4/718

图 1  SBM算法的流程图
图 2  光伏发电工作原理
参数 功率 斜面总辐射照度 温度 相对湿度
功率 1 0.973 0.333 ?0.481
斜面总辐射照度 0.973 1 0.252 ?0.437
温度 0.333 0.252 1 ?0.244
相对湿度 ?0.481 ?0.437 ?0.244 1
表 1  参数的相关性分析
图 3  改进型SBM算法的流程图
图 4  清洁–积灰对比实验系统的照片
图 5  清洁–积灰对比实验系统的结构图
参数 参数值
标准辐射照度/(W·m?2 1000
标准环境温度/(°) 25
额定最大功率/W 305
标准条件工作电流/A 7.71
标准条件工作电压/V 29.2
标准条件短路电流/A 8.15
标准条件开路电压/V 37.6
组件尺寸 1658 mm×992 mm×6 mm
表 2  光伏组件参数的标称值
图 6  对照组与实验组组串的发电功率
图 7  对照组与实验组发电功率的相对差距
方法 训练数据占比/% MSE/10?5 MRE/10?4 RMSE/10?2 NMSE NMAE R2
理论公式法 79.241 4.812 8.902 84.112 ?83.112 ?83.112
FNN 40 1.237 0.653 1.112 1.313 0.242 ?0.313
FNN 60 1.102 0.683 1.050 1.170 0.240 ?0.170
FNN 80 0.992 0.658 0.996 1.053 0.217 ?0.053
SVR 40 0.992 0.617 0.996 1.053 0.215 ?0.053
SVR 60 0.911 0.549 0.954 0.966 0.200 0.034
SVR 80 0.839 0.568 0.916 0.890 0.197 0.110
RF 40 1.125 0.669 1.061 1.194 0.232 ?0.194
RF 60 1.102 0.577 1.050 1.170 0.236 ?0.170
RF 80 0.880 0.485 0.938 0.934 0.200 0.066
原始SBM 1.735 0.550 1.324 1.861 0.266 ?0.861
改进型SBM 0.412 0.339 0.642 0.437 0.130 0.053
表 3  积灰诊断结果评价
图 8  FNN积灰诊断结果
图 9  SVR积灰诊断结果
图 10  RF积灰诊断结果
图 11  FNN、SVR、RF积灰诊断结果的评价
图 12  各方法积灰诊断结果的对比
图 13  各方法积灰诊断结果的评价指标
图 14  各方法积灰诊断结果的评价指标:R2
诊断方法 tr/ms 诊断方法 tr/ms
FNN 8.45 原始SBM 103
SVR 2.38 改进型SBM 10.75
RF 3.79
表 4  各方法的响应时间
1 WANG Z, XU Z, ZHANG Y, et al Optimal cleaning scheduling for photovoltaic systems in the field based on electricity generation and dust deposition forecasting[J]. IEEE Journal of Photovoltaics, 2020, 10 (4): 1126- 1132
doi: 10.1109/JPHOTOV.2020.2981810
2 KAZEM H A, CHAICHAN M T Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman[J]. Solar Energy, 2016, 139: 68- 80
doi: 10.1016/j.solener.2016.09.019
3 SCHILL C, BRACHMANN S, KOEHL M Impact of soiling on IV-curves and efficiency of PV-modules[J]. Solar Energy, 2015, 112: 259- 262
doi: 10.1016/j.solener.2014.12.003
4 赵波, 张姝伟, 曹生现, 等 基于状态监测的电池板积灰清洗周期确定与费用评估[J]. 中国电机工程学报, 2019, 39 (14): 4205- 4213
ZHAO Bo, ZHANG Shu-wei, CAO Sheng-xian, et al Cleaning cycle determination and cost estimation for photovoltaic modules based on dust accumulating condition monitoring[J]. Proceedings of the Chinese Society for Electrical Engineering, 2019, 39 (14): 4205- 4213
5 MATTEI M, NOTTON G, CRISTOFARI C, et al Calculation of the polycrystalline PV module temperature using a simple method of energy balance[J]. Renewable Energy, 2006, 31 (4): 553- 567
doi: 10.1016/j.renene.2005.03.010
6 ZAPATA J W, PEREZ M A, KOURO S, et al Design of a cleaning program for a pv plant based on analysis of energy losses[J]. IEEE Journal of Photovoltaics, 2015, 5 (6): 1748- 1756
doi: 10.1109/JPHOTOV.2015.2478069
7 ARANEO R, GRASSELLI U, CELOZZI S Assessment of a practical model to estimate the cell temperature of a photovoltaic module[J]. International Journal of Energy and Environmental Engineering, 2014, 5 (72): 1- 16
8 RAMLI M A M, PRASETYONO E, WICAKSANA R W, et al On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions[J]. Renewable Energy, 2016, 99: 836- 844
doi: 10.1016/j.renene.2016.07.063
9 张姝伟. 基于视觉的光伏板积灰状态监测与性能评估[D]. 吉林: 东北电力大学, 2019.
ZHANG Shu-wei. Vision-based monitoring and performance evaluation of photovoltaic panel dust deposition [D]. Jilin: Northeast Electric Power University, 2019.
10 YANG M, JI J, GUO B Soiling quantification using an image-based method: effects of imaging conditions[J]. IEEE Journal of Photovoltaics, 2020, 10 (6): 1780- 1787
doi: 10.1109/JPHOTOV.2020.3018257
11 SIMONAZZI M, CHIORBOLI G, COVA P, et al Smart soiling sensor for PV modules[J]. Microelectronics Reliability, 2020, 114: 113789
doi: 10.1016/j.microrel.2020.113789
12 PULIPAKA S, MANI F, KUMAR R Modeling of soiled PV module with neural networks and regression using particle size composition[J]. Solar Energy, 2016, 123: 116- 126
doi: 10.1016/j.solener.2015.11.012
13 PULIPAKA S, KUMAR R Power prediction of soiled PV module with neural networks using hybrid data clustering and division techniques[J]. Solar Energy, 2016, 133: 485- 500
doi: 10.1016/j.solener.2016.04.004
14 HEINRICH M, MEUNIER S, SAMé A, et al Detection of cleaning interventions on photovoltaic modules with machine learning[J]. Applied Energy, 2020, 263: 114642
doi: 10.1016/j.apenergy.2020.114642
15 SINGER R M, GROSS K C, HERZOG J P, et al. Model-based nuclear power plant monitoring and fault detection: theoretical foundations [R]. Lemont: Argonne National Lab. , IL, 1997.
16 GERTLER J. Fault detection and diagnosis in engineering systems [M]. New York: CRC Press, 1998.
17 WEGERICH S W. Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring [C]// Proceedings of 2004 IEEE Aerospace Conference. Big Sky: IEEE, 2004: 3654–3662.
18 WEGERICH S Similarity-based modeling of vibration features for fault detection and identification[J]. Sensor Review, 2005, 25: 114- 122
doi: 10.1108/02602280510585691
19 国家市场监督管理总局. 光伏发电效率技术规范: GB/T 39857–2021 [S]. 北京: 中国标准出版社, 2021.
20 ZHU J, CHEN N, PENG W Estimation of bearing remaining useful life based on multiscale convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (4): 3208- 3216
21 MOHAMMADI B, MEHDIZADEH S Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm[J]. Agricultural Water Management, 2020, 237: 106145
doi: 10.1016/j.agwat.2020.106145
[1] 徐力刚, 黄亚继, 王健, 邹磊, 岳峻峰. 还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性[J]. 浙江大学学报(工学版), 2018, 52(8): 1535-1541.
[2] 杨继虎, 孙志坚, 袁瑞峰, 黄浩, 陈天宇, 胡亚才. 电厂氟塑钢空预器的传热与积灰性能研究[J]. 浙江大学学报(工学版), 2018, 52(3): 577-583.
[3] 杨滔, 吕征宇. 三相光伏系统中一种新的最大功率点追踪方法[J]. J4, 2012, 46(8): 1490-1497.